Автор работы: Пользователь скрыл имя, 16 Декабря 2010 в 00:58, лекция
Назначение и классификация.
Диодные и триодные тиристоры.
Переходные процессы при включении и выключении тиристора
Основные параметры тиристоров
Маркировка силовых тиристоров
Лавинные тиристоры
Полностью управляемые тиристоры
Специальные типы тиристоров
7. Тиристоры
7.1
Назначение и классификация
Тиристор представляет собой полупроводниковый прибор с двумя устойчивыми состояниями, который может переключаться из закрытого состояния в открытое и наоборот.
Это определило его название – “thyra” по гречески “дверь”. Тиристор подобно двери открывается, пропуская электрический ток, и закрывается, преграждая путь току. Тиристоры используются в цепях электропитания устройств связи и энергетики, в качестве регуляторов.
Применение тиристоров на электроподвижном составе и тяговых подстанциях позволило осуществлять плавное регулирование выпрямленного тока, инвертирование тока, а также выполнять ряд других функций.
Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор. К числу факторов, наиболее широко используемых для отпирания тиристоров, относится воздействие напряжением (током) или светом (фототиристоры).
По
своей структуре тиристоры
Существует много разновидностей тиристоров (рис. 7.1).
Рис. 7.1. Классификация тиристоров
Основными
типами являются диодные и триодные тиристоры.
7.2.
Диодные и триодные
тиристоры
В диодных тиристорах (динисторах) переход прибора из закрытого состояния в открытое связан с тем, что напряжение между анодом и катодом достигает некоторой граничной величины – напряжения включения (Uвкл), являющейся параметром прибора.
В триодных тиристорах (тринисторах) управление состоянием прибора производится по цепи третьего – управляющего электрода.
Устройство
тиристора с управляющим
Рис. 7.2.
Устройство тиристора с управляющим электродом
Исходным материалом для изготовления тиристора является кремниевая пластина n-типа. Сначала путем диффузии акцепторной примеси с обеих сторон создают транзисторную структуру p1-n1-p2. Затем, после локальной обработки поверхности слоя p2, вносят донорную примесь в этот слой для получения четвертого n2-слоя.
Рассмотрим структурную схему тиристора при приложении напряжений обратной и прямой полярности и его ВАХ (рис. 7.3, 7.4).
Рассмотрим обратную ветвь вольт-амперной характеристики тиристора, которая снимается при токе управления Iу = 0. Обратному напряжению соответствует полярность, указанная на рис. 7.3 без скобок. При приложении обратного напряжения Uобр переходы П1 и П3 закрыты, П2 – открыт. Падение напряжения на переходе П2 мало, поэтому можно предположить, что обратное напряжение Uобр распределяется равномерно между переходами П1 и П3.
Рис. 7.3.
Вольт-амперная характеристика тиристора
Рис. 7.4. Структурная схема тиристора при приложении напряжений
обратной и прямой полярности
При изготовлении тиристоров концентрация примесей в слоях p2 и n2 делается намного выше концентрации примесей в слоях p1 и n1, поэтому переход П3 получается узким. С приложением обратного напряжения переход П3 вступает в режим электрического пробоя при напряжении, меньшем рабочего напряжения тиристора, то есть обратное напряжение приложено по существу к переходу П1.
Обратная
ветвь ВАХ тиристора
Рассмотрим прямую ветвь ВАХ. При приложении прямого напряжения переходы П1 и П3 открыты, переход П2 закрыт.
Рассмотрим работу тиристора при токе управления Iу = 0. Этот режим соответствует работе тиристора в режиме динистора.
Для
рассмотрения принципа работы тиристора
воспользуемся
Из-за большого сопротивления перехода П2 тиристор находится в закрытом состоянии.
Чтобы открыть тиристор необходимо сбалансировать потенциальный барьер на границе слоев n1 и p2. Под действием прямых напряжений через эмиттерные переходы (П1 и П3) происходит инжекция основных носителей заряда в соответствующие базы транзисторов n1 и p2. В транзисторе VT2 электроны из эмиттера (слой n2) переходят в базу (слой p2), где становятся неосновными носителями. Часть этих электронов рекомбинирует в базе, а остальные переходят на коллектор n1, где создается избыточный отрицательный заряд. Аналогично дырки создают в слое p2 избыточный положительный заряд.
Однако, за счет обратного напряжения на переходе П2 в области n1 имеется положительный заряд, а в области p2 – отрицательный, образующие потенциальный барьер. Избыточные электроны в слое n1 и дырки в слое p2, накапливаясь, создают свое электрическое поле, которое снижает потенциальный барьер. Чем больше напряжение Uпр, тем больше это поле, и в результате оно может полностью компенсировать потенциальный барьер, при этом Uпр достигнет значения напряжения включения Uвкл. Ток тиристора резко возрастет, тиристор откроется, его ВАХ будет идентична ВАХ диода. Сопротивление перехода П2 станет незначительным (как у переходов П1 и П3). На рис. 7.3 значение напряжения включения Uвкл соответствует значению в точке а.
Процесс скачкообразного переключения тиристора из закрытого состояния в открытое можно еще весьма просто объяснить математически.
Коллекторные токи транзисторов VT1 и VT2 определяются следующим образом:
Iк1 = a1×Iэ1;
Iк2 = a2×Iэ2.
Через коллекторный переход течет еще обратный ток этого перехода – Iко – тепловой ток. Таким образом, результирующий ток коллекторного перехода будет равен:
Iкол = Iк1 + Iк2 + Iко = a1×Iэ1 + a2×Iэ2 + Iко. (7.2)
Все переходы в тиристоре соединены последовательно и тиристор имеет два силовых вывода, поэтому результирующий ток будет равен:
IА
= Iк = Iэ1
= Iэ2.
Из выражения (7.2) с учетом (7.3) можно определить ток анода:
.
При малых токах a1 и a2 значительно меньше единицы и сумма их также меньше единицы. Тогда в соответствии с выражением (7.4) ток IА получается сравнительно небольшим. С увеличением тока a1 и a2 растут, и это приводит к возрастанию тока IА. При некотором токе, являющимся током включения Iвкл, сумма a1 + a2 становится равной единице и ток IА возрос бы до бесконечности, если бы его не ограничивало сопротивление нагрузки Rн (участок б-в на рис. 7.3). Именно такое стремление тока IА неограниченно возрастать указывает на скачкообразное нарастание тока, то есть на отпирание тиристора.
При отсутствии тока управления Iу тиристор будет всегда открываться при напряжении включения Uвкл (точка а на рис. 7.3), но он неуправляем, т.е. работает в режиме динистора.
В
ряде случаев динистор используется
в электрических цепях в
Недостатком динисторов является большое значение напряжения включения Uвкл при протекании больших токов.
Создав третий электрод можно управлять моментом открытия тиристора. Такой тиристор (трехэлектродный) называется тринистором.
С увеличением напряжения управления + Uупр возрастает значение тока управления Iу. Ток управления приводит к движению электронов из области n2 в область p2. Для области p2 электроны – неосновные носители заряда, для них поле перехода П2 действует втягивающее (экстракция). Эти электроны усиливают компенсацию объемного положительного заряда и тиристор открывается при значении прямого напряжения Uпр меньшем, чем значение напряжения включения Uвкл. У тиристора растет значение a2, сумма a1 + a2 стремится к единице при напряжении Uпр < Uвкл. Значения тока Iу – единицы миллиампер, при этом значения тока IА достигает десятков и сотен ампер. На рис. 7.3 точки г, д, е, ж соответствуют различным сочетаниям значений Uвкл и Iу (Uвкл1 и Iу1; Uвкл2 и Iу2 и т.д.). Существует значение тока управления, при котором тиристор открывается сразу – ток управления спрямления. При этом ВАХ тиристора вырождается в ВАХ диода.
Тиристор
– частично управляемый вентиль,
так как можно управлять только
моментом его открытия, тиристор не
может закрыться при уменьшении
Iу, а закроется при условии, что
ток анода IА будет меньше тока удержания
Iуд.
7.3.
Переходные процессы
при включении и выключении
тиристора
7.3.1.
Переходные процессы
при включении тиристора
Рассмотрим процесс включения тиристора. Тиристор включается подачей импульса тока на его управляющий электрод. Так как после отпирания вентиля ток управления Iу больше не влияет на его работу, то для управления тиристором применяются кратковременные импульсы (несколько сотен микросекунд). Для четкого включения импульс тока управления должен иметь достаточную крутизну S = 1-5 А/мкс.
Временные диаграммы электромагнитных процессов при включении тиристора приведены на рис. 7.5.
Рис. 7.5.
Временные диаграммы
при включении
тиристора
При подаче импульса управления (рис. 7.5, а) тиристор переходит из запертого состояния в открытое не мгновенно, так как для инжекции носителей электричества в слои p2 и n1 требуется определенное время. За время включения tвкл (рис. 7.5, б) принимают промежуток времени от момента подачи импульса до момента когда прямое напряжение Uпр уменьшится до 10 % от первоначального значения.
На рис. 7.5 б, в видно, что время включения определяется по выражению:
tвкл = tз
+ tн ,
где tз – время задержки;
tн – время нарастания тока.
За время tз прямое напряжение Uпр снижается от 100 до 90 %, а ток Iпр возрастает от 0 до 10 % от установившегося значения. За время tн прямое напряжение Uпр снижается от 90 до 10 %, а ток Iпр возрастает от 10 до 90 % от установившегося значения.
В зависимости от мощности тиристора время включения tвкл = 2-20 мкс.
Физически в течение времени задержки tз происходит первоначальная инжекция электронов из эмиттерной области П2 в базовую область p2. Ток, проходящий через вентиль за это время, увеличивается сравнительно медленно и определяется числом электронов, перешедших через переход П2. За время нарастания тока tн происходит резкое уменьшение сопротивления перехода П2, что вызывает лавинообразное нарастание прямого тока Iпр. Переходный процесс заканчивается с установлением на приборе значения напряжения DUпр, а прямой ток достигает установившегося значения Iпр. С увеличением амплитуды импульса тока управления и крутизны фронта время задержки tз и время нарастания тока tн уменьшаются.