Автор работы: Пользователь скрыл имя, 29 Октября 2012 в 19:47, курсовая работа
Телевидение и звуковое радиовещание – самые массовые средства информации.
Телевидение (ТВ) и звуковое радиовещание (ЗВ) стали теперь самыми популярными и эффективными средствами массовой информации. Если говорить об электронном и многострочном ТВ, то оно начало распространяться со второй половины 30-х годов (1936 г. – США, Англия, 1938 г.– Франция, СССР).
1 Введение
Телевидение и звуковое радиовещание – самые массовые средства информации.
Телевидение (ТВ) и звуковое радиовещание (ЗВ) стали теперь самыми популярными и эффективными средствами массовой информации. Если говорить об электронном и многострочном ТВ, то оно начало распространяться со второй половины 30-х годов (1936 г. – США, Англия, 1938 г.– Франция, СССР). В нашей стране оно стало приобретать по-настоящему широкий размах со второй половины 50-х годов. Радиовещание зародилось примерно на 15 лет раньше многострочного ТВ–после окончания первой мировой войны. Первая вещательная станция заработала в России в 1922 г.
За прошедшие годы в нашей стране создана уникальная по своим масштабам и возможностям распределительная передающая сеть ТВ и ЗВ. В этой сети сегодня работает около 12000 телевизионных передатчиков мощностью от 1Вт до 50кВт и около 1700 радиовещательных передатчиков различных диапазонов и мощности–от десятков ватт до 2МВт.
Для раздачи по стране на передатчики Федеральных, межрегиональных и региональных программ ТВ и ЗВ используется орбитальная группировка из десяти спутников связи и более 100000 км наземных радиолинейных линий связи.
С помощью распределительной сети осуществляется пятизоновое вещание формируемых в Москве Федеральных программ ТВ и ТЗ. Это позволяет их доводить в удобное для население время суток по всей территории России, занимающей 10 часовых поясов. В настоящее время одну программу ТВ могут смотреть до 98,9% населения, две программы – до 96,5% и три и более программы – до 60% населения. Аналогичным способом обеспечивается высокий процент охвата населения основными программами ЗВ.
Для ТВ сначала было выделено 12 каналов в метровом диапазоне, но вскоре этот частотный спектр был исчерпан и, потребовалось освоение дециметровых волн, без чего было невозможно увеличение числа передаваемых программ. Происходящие изменение в политической и экономической жизни России приводят к появлению, как в центре, так и в регионах негосударственных телевизионных компаний, и для выделения им ТВ каналов требуется освоение всё более высоких участков спектра. Но в такой путь увеличения числа ТВ программ не безграничен. Поэтому во многих случаях решать проблему многопрограммности целесообразно с помощью сетей кабельного телевидения, а также спутниковых систем непосредственного телевизионного вещания.
Более эффективное использование спектра средствами ТВ и ЗВ, что даёт возможность увеличить число передающих средств в том же частотном пространстве.
Многие действующие ныне передающие средства ТВ и ЗВ морально устарели и нуждаются, до их замены, в модернизации. В ходе её предстоит на основе новых технологий упрощать принципиальные схемы, повышать КПД энергоёмких каскадов, повышать степень автоматизации передающих средств. Огромные возможности повышения эффективности передающей сети заложены во внедрении уже известных методов передачи значительных потоков дополнительной информации одновременно с передачей основных программ ТВ и ЗВ.
Большие перспективы открывают цифровые методы формирования, обработки и передачи сигналов как ТВ, так и ЗВ.
В настоящее время у нас и за рубежом интенсивно ведутся исследование по созданию систем ТВ повышенного качества и телевидения высокой точности (ТВ ВЧ). Отечественные специалисты вносят существенный вклад в эти работы. Так, ими разработана концепция ТВ ВЧ-6-7-8, реализация которой позволяет передавать сигналы ТВ ВЧ по обычным каналам с полосой пропускания 6,7 и 8мГц. Эти методы позволяют существенно экономить частотный спектр.
Звуковое радиовещание в нашей стране многие десятилетия велось в диапазонах длинных, средних и коротких волн с помощью передатчиков достаточно большой мощности–в десятки, сотни киловатт и даже 1–2МВт. Это позволило доводить программу до населения, проживающего на больших удалениях от передающих центров и радиостанций. Однако работа в этих диапазонах не может обеспечить вещание высокого качества. Для высококачественного УКВ ЧМ вещания в нашей стране был выделен диапазон 66…74МГц, причём для стереофонических передач в этом диапазоне применяется полярная модуляция. В последующее время в России стал осваиваться также европейский диапазон 88…108МГц, но только на усечённом участке 100…108МГц. Работа УКВ ЧМ станций только в диапазоне 66…74МГц была вызвана тем, что международный диапазон до 100МГц использовался в СССР для ТВ, а более высокочастотный участок–другими ведомствами. Сейчас это положение начинает медленно, но исправляться – международные вещательные диапазоны начинают освобождаться от других служб. Сказанное в отношении УКВ ЧМ вещания в полной мере может быть отнесено и к ТВ.
С образованием СНГ возникла необходимость учитывать возможное мешающее действие российских сетей ЗВ на сети регионов, ставшим зарубежными. В связи с этим рассматриваются новые подходы к планированию сетей, изучается целесообразность перехода на сети с использованием передатчиков небольшой мощности там, где это оправдано технически и экономически.
Приведённые примеры свидетельствует
о том, что имеются большие
резервы для повышения качества и
многопрограммности телевизионного и
звукового вещания, эффективности использования
частотного спектра.
3 Выбор и обоснование принципиальной
схемы
Разбивка на поддиапазоны не производится,
так как Кд=Fmax/Fmin=285/148=
2 Предварительный расчёт
2.1 Выбор и обоснование структурной схемы приёмника
В наше время приёмники собранные по схеме прямого усиления практически не применяются в связи с большими недостатками этого типа построения приёмников. Один из наиболее серьёзных недостатков то, что структурная схема прямого усиления имеет низкую чувствительность так как на высокой несущей частоте невозможно обеспечить высокий коэффициент усиления, схема же супергетеродинного типа обеспечивает высокую чувствительность так как основное усиление происходит в каскадах УПЧ на неменяющейся при перестройки приёмника промежуточной частоте при сколь угодно большом числе каскадов УПЧ с высоким коэффициентом усиления.
Схема
прямого усиления имеет слабую
избирательность так как на
высокой несущей частоте невозм
где fПР – промежуточная частота приёмника;
fНЕС – несущая частота приёмника;
Q - добротность
поэтому с увеличением несущей частоты возрастает полоса пропускания, ухудшается избирательность. Схема супергетеродинного типа имеет высокую избирательность так как основная избирательность по соседнему каналу обеспечивается в избирательной системе имеющей хорошую добротность, узкую полосу пропускания и прямоугольность резонансной характеристики.
Так же схема супергетеродинного типа обладает более высокой помехоустойчивостью отношением сигнал/шум, а значит лучшее качество воспроизведения, так как в этой схеме усиление ведётся по трём частотным трактам (радио, промежуточной и звуковой частоты) в результате уменьшаются паразитные помехи.
В соответствии с техническим заданием и выше перечисленным причинами приёмник следует собирать по схеме супергетеродинного типа.
2.2 Выбор и обоснование
элементной базы
Современное состояние транзисторной техники позволяет применить транзисторы во всех каскадах приемников без ухудшений качества его работы. Для обеспечения наилучших показателей усилительных устройств, целесообразно применять транзисторы с наибольшим коэффициентом передачи тока и коэффициента частотного использования меньше 0,3.
2.3 Выбор типа транзистора для ВЧ тракта
Исходные данные: Частота f, напряжение питания Uкэ.
Выбираю транзистор в соответствии с заданным частотным диапазоном и напряжением питания. Я выбираю транзистор ГТ309Б типа р-n-р. Его электрические параметры (таблица 2.3).
Таблица 2.3
Т Тип Электро проводимости |
В режиме усиления |
h11 Ом |
hh22 ммкс\м |
hh21э ООм |
ffгр, МГц |
CСк ппф |
Շ пс |
rrб, ООм |
||B| |
Технология изготовления | |
UUкэ В |
i Iэ, мА | ||||||||||
Рp-n-p |
5 |
5 |
338 |
5 |
1100 |
110 |
110 |
5500 |
550 |
6 6 |
диффузионный |
Շ- постоянная времени цепи ООС.
Շ= rб* Cк;
rб =Շ/Cк;
|В| модуль коэффициента передачи тока на частоте f.
γ= fmax.раб/fгран=1,605/30=0,0535
2.4 Расчет НЧ усилительных параметров транзистора
Исходные данные:
Напряжение база коллектор Uбк=5 В;
Ток коллектора Iк=5 мА;
h11б=38 Ом;
h21э=100 Ом;
h22б=5 мкСим;
Сопротивление базы транзистора rб=50 Ом;
Емкость перехода Ск=10 пф;
|B|=6;
Расчет:
Крутизна характеристики:
So=1000/ h11б=1000/38=26 мА/В;
Входная проводимость:
g=(100*10-3)/( h11б(1+ h21э))= (100*10-3 )/(38*(1+200))=0,26*10-3 Сим;
Проводимость обратной связи:
Gос= h22б=5*10-6 Сим;
Выходная проводимость:
gi= h22б*(1+ rб* So*10-3)= 5*10-6*(1+200*26*10-3)=18*10-6 мкСим;
Постоянная времени:
Շ=(rб* Ск)/(2*π*m*|B|*f* h11б* Ск)=
=(500)/(1,6*6,28*6*10*38*10)=
2.5 Расчет ВЧ параметров транзистора
Определить высокочастотные параметры транзистора на частоте 465КГц, ток коллектора 5мА.
Исходные данные:
Напряжение база коллектор Uбк=5В;
Ток коллектора Iк=5мА;
Крутизна характеристики So=26 мА/В;
Входная проводимость g=0,26*10-3 Сим;
Выходная проводимость gi=18*10-6 мкСим;
Постоянная времени Շ=0,0021 мкс;
rб=50 Ом;
Ск=10 пф;
Fo=465КГц;
Расчет:
Определение вспомогательных коэффициентов:
Н= So* rб*10-3=26*50*10-3=1,3;
Ф= (So* rб* Ск*10-9)/Շ=(26*50*10)/(0,0021)
Б=(Շ/ rб)*(1-g* rб)*10-6=(0,0021/50)*(1-0,26*1
υ=2*π*fo*Շ=2*3,14*0,465*0,
Входное сопротивление:
gвх=g+ υ2/ rб=0,26+(0,006/50)=0,21*10-3 Сим;
Rвх=1/ gвх=1/(0,0021)=4761 Ом;
Выходное сопротивление:
gвых= gi+ υ2/Ф=5*10-6 +0,0062*6,19*10-3=25*10-7 Сим;
Rвых=1/ gвых=1/(25*10-7)=188*103 Ом;
Входная емкость:
Свх=Б=20 пФ;
Выходная емкость:
Свых=Ск(1+Н)=10*(1+1,3)=23 пФ;
Крутизна характеристики:
S=So= 26 мА/В;
2.6 Выбор числа поддиапазонов и их границ
Исходные данные: fmax= 285 КГц ; fmin= 148 КГц (ДВ)
fmax= 1605 КГц ; fmin= 525 КГц (СВ)
Согласно техническим требованиям коэффициент поддиапазона КПД≤ 3.
Проверяется коэффициент перекрытия
поддиапазона КД
по формуле:
Так как заданного по техническим условиям (1,93 < 3), то разбивка на поддиапазоны не производится.
Для обеспечения перекрытия данных поддиапазонов при изменении напряжения питания, изменении температуры и т.д., необходимо раздвинуть крайние частоты поддиапазонов на 1÷3%. Поэтому определяют крайние частоты перекрытием для каждого поддиапазона.
Крайние частоты каждого поддиапазона определяются по формуле:
Коэффициент поддиапазона с перекрытие:
2.7 Выбор блока переменных конденсаторов
Для проектируемого приемника ориентируясь на минимальную частоту рабочего диапазона fmin=148КГц, я выбираю КПЕ с параметрами:
Сmin=25пФ Сmax=750пФ. для
Емкость построечного конденсатора: Сподстр.=2÷8пФ.
Марка блока – «Сириус-5».
2.8 Проверка перекрытия диапазонов
Провести проверку перекрытия выбранным КПЕ заданного диапазона.
Исходные данные:
коэффициент поддиапазона с запасом К1ПД = 1,92; (ДВ)
К1ПД = 3,05; (СВ)
КПЕ: С min = 25
пФ; С max = 750 пФ