Полупроводниковые приборы

Автор работы: Пользователь скрыл имя, 08 Января 2012 в 17:34, контрольная работа

Краткое описание

Цель работы: Изучение принципа работы полупроводниковых приборов на примере биполярного и полевого транзисторов. Экспериментальное и компьютерное исследование их вольт-амперных характеристик и расчет основных h-параметров.

Содержимое работы - 1 файл

Полупроводниковые приборы.doc

— 434.50 Кб (Скачать файл)

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ 

               Цель работы:  Изучение принципа работы полупроводниковых приборов на примере биполярного и полевого транзисторов. Экспериментальное и компьютерное исследование их вольт-амперных  характеристик и расчет   основных h-параметров. 

  1. Полупроводниковые диоды

    Диодами называют двухэлектродные элементы электрической цепи, обладающие односторонней проводимостью тока. В полупроводниковых диодах односторонняя проводимость обуславливается применением полупроводниковой структуры, сочетающей в себе два слоя, один из которых обладает дырочной (p), а другой электронной (n) проводимостью.

                          А      p   n       К                   А                   К 

    Принцип действия полупроводникового  диода основывается на специфике процессов, протекающих на границе раздела р- и n- слоев, в так называемом электронно-дырочном p-n-переходе.

    В германиевых и кремниевых диодах двухслойная p-n-структура создается введением в один из слоев монокристалла акцепторной примеси, а в другой – донорной примеси. На практике наибольшее распространение получили p-n-структуры с неодинаковой концентрацией акцепторных и донорных примесей, т.е. с неодинаковой концентрацией основных носителей заряда в слоях рр и nn. Типичными являются структуры с рр » nn. На примере германия принято следующее распределение концентраций: рр = 1018 см –3, nn = 1015 см –3. Концентрация собственных носителей заряда в германии при 20ºС ni = 2,5 · 1013 см –3.

    В p-n-структуре на границе раздела слоев АВ (рис.1) возникает разность концентраций одноименных носителей заряда. В приграничной области под действием разности концентраций возникает диффузионное движение основных носителей заряда во встречном направлении через границу раздела. Дырки из р-области диффундируют  в   n-область,  электроны  из  n-области – в р-область.

При уходе  дырок из р-области в ней создается нескомпенсированный отрицательный объемный заряд за счет оставшихся отрицательных ионов акцепторных атомов примеси. Электроны, ушедшие из n-слоя оставляют здесь нескомпенсированный положительный объемный заряд. Наличие объемного заряда является главной особенностью p-n-перехода. 
 
 
 
 
 
 
 
 

                                                            A                                                         

                                                         -   +  +

                                            p           -   +  +        n

                                                         -   +  +

                                                         -   +  +  

                                                            B

                                       pp 1018  

                                       ni                             nn 1015

                                     

                                       np 109                      pn 1012

                                                                                                x 

                           q                                   +

                                                                    

                                                                                                x

                                                       _                                                  

 

                           Е

                                                                                                x

                                 
 
 
 

                           φ                                                                   x 
 

                                     φo                                                                   Рис. 1 

      

Ввиду наличия объемного заряда в  р-n-переходе создаётся электрическое поле и разность потенциалов.

     Толщина слоя объемного заряда составляет доли микрометров. Внутреннее электрическое поле объемных зарядов с потенциальным барьером φо создает тормозящее действие дальнейшего диффузионного процесса. При комнатной температуре для германия φо = 0,3 ÷ 0,5 В, а для кремния φо = 0,6 ÷ 0,8 В.

     Рассмотрим случай, когда внешнее напряжение подключено к p-n- структуре в прямом направлении, т.е. плюсом источника к выводу p-области, а минусом источника к выводу n-области. При таком подключении источника создаваемое им электрическое поле направлено противоположно внутреннему полю, что приводит к уменьшению результирующего поля в p-n-переходе. Уменьшение потенциального барьера облегчает переход основных носителей заряда под действием поля через границу раздела.  
 

                                                            +      
 

                                                                    -    +

                                       p                           -    +                           n

                                                                    -    +

                     

                             j                                                                                x

                                                             φo-Ua 

                                             φo 

                                                                          φo+Ua                                         a) 

                                    Ia 

                                                                                                     Рис. 2 
 

                               Io

                                                                                                           Ua              б)

                                                                               ΔUa

 

С повышением приложенного внешнего напряжения, диффузионный ток увеличивается (т.к. уменьшается потенциальный барьер), в связи с чем возрастает прямой ток через p-n-переход. Примерный вид прямой ветви вольтамперной характеристики p-n- перехода показан на рис. 2б.

     При подключении к диоду источника  внешнего напряжения в обратном направлении (рис.2а)  потенциальный барьер возрастает на величину Uа и становится равным φо+Uа. При этом увеличивается объемный заряд в p-n-переходе и его ширина. Возросший потенциальный барьер затрудняет прохождение через p-n-переход основных носителей заряда, вследствие чего диффузионный ток уменьшается. Дрейфовый ток, обусловленный неосновными носителями заряда, остается неизменным.

     Прямой ток диода создается основными носителями заряда, а обратный – неосновными. Концентрация основных носителей заряда на несколько порядков превышает концентрацию неосновных носителей. Этим и обуславливаются вентильные свойства p-n-перехода, а следовательно и диода. Проведенному теоретическому анализу вольт-амперной характеристики диода соответствует ее запись в аналитической форме:  

,   называемая  уравнением  Шокли.   При  20˚С  = 0,026 В. 

     По конструктивно-технологическим  признакам диоды подразделяются  на точечные и плоскостные,  сплавные и диффузионные, по функциональному  назначению и принципу образования p-n-перехода – на выпрямительные, импульсные, туннельные, диоды Шотки, стабилитроны, варикапы, фотодиоды, светодиоды и т.д. 

     Выпрямительные диоды. Это диоды, предназначенные для выпрямления переменного тока в постоянный, к быстродействию, емкости p-n-перехода и стабильности параметров которого не предъявляют высоких требований. Их выполняют на сплавных и диффузионных несимметричных p-n-переходах. Они характеризуются  малым   сопротивлением  в прямом направлении и позволяют пропускать большие токи (до десятков и сотен ампер) при допустимых обратных напряжениях до 1000 В. Емкость p-n-перехода из-за большой его площади относительно велика (десятки пикофарад), и, следовательно, переходные процессы протекают относительно долго.

     Импульсные диоды. Диоды, предназначенные для работы в импульсных цепях, должны иметь малую длительность переходных процессов, что можно обеспечить лишь уменьшением емкости p-n- перехода. Уменьшение емкости достигается за счет сокращения площади p-n-перехода. Однако это уменьшает теплоотвод, и естественно допустимые мощности рассеяния (30 – 40 мВт).

     Переходные процессы в диоде заключаются в следующем. При подаче к диоду импульса напряжения прямой полярности происходит инжекция неосновных носителей (дырок) из р-области в n-область и диод переходит из запертого состояния в открытое. Этот процесс определяет время установления прямого тока  tуст. (рис. 3).

                               i

             

                                                     tуст                  Iпрям.

                                                                                   0,1 Iпр.           t 

                                                       iобр.      

                                                                                       tвост.                       Рис. 3 

     При изменении полярности импульса напряжения требуется время для рассасывания неосновных носителей из n-области и восстановления исходного состояния. Это рассасывание происходит как за счет рекомбинации дырок с электронами, так и за счет возвращения дырок в свою р-область. Этот процесс характеризуется временем восстановления обратного сопротивления tвост . Это время в течение которого обратный ток уменьшается до 0,1 Iпр .

     Учитывая важность переходных  процессов для оценки работы  импульсных диодов, они (в дополнение к параметрам выпрямительных диодов) характеризуются временами tуст и tвост , а также емкостью p-n-перехода Сд и максимальным прямым импульсным напряжением Uпр.max .

     Диоды Шотки.        Металлополупроводниковые    диоды (диоды Шотки), у которых выпрямляющий переход представляет собой тонкую пленку молибдена или алюминия, нанесенную на пластинку кремния методом вакуумного испарения, обладают емкостью, не превышающую 0,01пкФ, что обеспечивает время их переключения доли наносекунды и предельную частоту работы десятки гигагерц. Благодаря меньшему прямому напряжению 0,3 В, вместо 0,7 В у диодов с p-n-переходом, они обеспечивают более высокий КПД.   Условное обозначение диода Шотки             отличается от выпрямительного и импульсного.

Информация о работе Полупроводниковые приборы