Контрольная работа по "Психологии"

Автор работы: Пользователь скрыл имя, 16 Февраля 2012 в 15:54, контрольная работа

Краткое описание

Теоретический уровень познания. Теоретические методы познания (формализация, аксиоматизация, гипотетико-дедуктивный метод).

Содержимое работы - 1 файл

Концепция естествознания.doc

— 140.50 Кб (Скачать файл)

     15. Теоретический уровень  познания. Теоретические  методы познания (формализация, аксиоматизация, гипотетико-дедуктивный  метод). 

     Теоретическое познание отражает явления и процессы со стороны их универсальных внутренних связей и закономерностей, постигаемых путем рациональной обработки данных эмпирического знания.

     Задача: достижение объективной истины во всей ее конкретности и полноте содержания.

   Характерные признаки:

  • преобладание рационального момента – понятия, теории, законы и др. формы мышления
  • чувственное познание является подчиненным аспектом
  • направленность на себя (исследование самого процесса познания, его форм, приемов, понятийного аппарата).

   Методы: позволяют производить логическое исследование собранных фактов, вырабатывать понятия и суждения, делать умозаключения.

   1. Абстрагирование – отвлечение от ряда свойств и отношений предметов менее существенных, с одновременным выделением более существенных, это упрощение действительности.

   2. Идеализация – процесс создания чисто мысленных предметов, внесение изменений в изучаемый объект в соответствиями с целями исследования (идеальный газ).

   3. Формализация – отображение результатов мышления в точных понятиях или утверждениях.

   4. Аксиоматизация – в основе лежат аксиомы (аксиомы Эвклида).

   5. Дедукция – движение познания от общего к частному, восхождения от абстрактного к конкретному.

   6. Гипотетико–дедуктивный – выведение (дедукция) заключений из гипотез, истинные значения которых неизвестны. Знание носит вероятностный характер. Включает соотношение между гипотезами и фактами.

   7. Анализ – разложение целого на составные части.

   8. Синтез – объединение полученных результатов анализа элементов в систему.

   9. Математическое моделирование – реальная система заменяется абстрактной системой (математическая модель, состоящая из набора математических объектов) с теми же отношениями, задача становится чисто математической.

   10. Рефлексия – научно – исследовательская деятельность, рассматриваемая в широком культурно-историческом контексте, включает 2 уровня – предметный (активность направлена на познание конкретной совокупности явлений) и рефлексивный (познание обращается на само себя).

   Теоретическое познание наиболее адекватно отражается в мышлении (активный процесс обобщенного и опосредованного отражения действительности), и проходит здесь путь от мышления в установленных рамках, по образцу, ко все большему обособлению, творческому пониманию исследуемого явления.

   Основными способами отражения в мышлении окружающей действительности являются понятие (отражает общие, сущностные стороны объекта), суждение (отражает отдельные характеристики объекта); умозаключение (логическая цепочка, рождающая новое знание).

   Структурные компоненты теоретического познания: проблема (вопрос, требующий ответа), гипотеза (предположение, выдвинутое на основании ряда фактов и требующее проверки), теория (наиболее сложная и развитая форма научного знания, дает целостное объяснение явлений действительности). Генерация теорий – конечная цель исследования.

   Квинтэссенция теории – закон. Он выражает сущностные, глубинные связи объекта. Формулирование законов – одна из основных задач науки. 

   При всех различиях эмпирический и теоретический  уровни научного познания связаны. Эмпирическое исследование выявляя новые данные с помощью экспериментов и наблюдений, стимулирует Теоретическое познание (которое их обобщает и объясняет, ставит перед ними новые, более сложные задачи). С другой стороны, теоретическое познание, развивая и конкретизируя на базе эмпирии новое собственное содержание, открывает новые более широкие горизонты для эмпирического познания, ориентирует и направляет его в поисках новых фактов, способствует совершенствованию его методов и средств.

   Получается, что теория вырастает не из эмпирии, но как бы рядом с ней, а точнее, над ней и в связи с ней”. Теоретический уровень - более высокая ступень в научном познании. “Теоретический уровень познания направлен на формирование теоретических законов, которые отвечают требованиям всеобщности и необходимости, т.е. действуют везде и всегда”. Результатами теоретического познания становятся гипотезы, теории, законы. Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического. Гипотезы и теории формируются в процессе теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно-наглядные образы (в том числе схемы, графики и т. п.), с которыми имеет дело эмпирический уровень исследования1. 
 
 
 
 
 

     55. Структурность материи.  Структурные уровни  организации материи  в живой и неживой  природе. Горизонтальные  и вертикальные связи. Три уровня строения материи: микромир, макромир и мегамир.  Что является критерием выделения этих уровней? 

  Материя – одно из фундаментальных понятий философии и науки. По определению В. И. Ленина, материя – философская категория для обозначения объективной реальности, отображаемой нашими ощущениями и существующей независимо от них. Важнейшим свойством материи и материальных образований является ее системность и структурность.

  Система – это комплекс взаимодействующих  элементов, или, что одно и то же, ограниченное множество взаимодействующих элементов. Для системы обычно характерна иерархичность строения – последовательное включение системы более низкого уровня в систему более высокого уровня.

  Мы  знаем, что непосредственно наблюдаемые  нами тела состоят из молекул, молекулы – из атомов, атомы – из ядер и электронов, атомные ядра – из нуклонов (нейтронов и протонов), нуклоны – из кварков. Сегодня принято считать, что электроны и кварки не содержат более мелких частиц.

  Поэтому в современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир.

  К микромиру относятся молекулы, атомы  и элементарные частицы. Макромир составляют материальные объекты, состоящие из огромного числа атомов и молекул. Мир планет, звезд, галактик и Вселенной образует мегамир.

  Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро– и мегамира. Таким образом, можно говорить о  единой материальной основе происхождения  всех материальных систем на разных стадиях эволюции Вселенной.

  Свойства  и особенности материальных объектов микро-, макро– и мегамира отличаются друг от друга не только размерами, но и количественными характеристиками. Материальные объекты образуют целостную  систему, если энергия связи между ними больше кинетической энергии каждого из них. Энергия связи – это та энергия, которую надо затратить на «растаскивание» всей системы на отдельные ее части полностью.

  С другой стороны, в классической физике различали два вида материи – вещество и поле. Вещество – это вид материи, обладающий массой покоя. В конечном счете вещество слагается из элементарных частиц, масса покоя которых не равна нулю (в основном из электронов, протонов и нейтронов). В классической физике вещество и поле противопоставлялись друг другу как два вида материи, у первого из которых структура дискретна, а у второго – непрерывна. Квантовая физика, внедрившая идею двойственной корпускулярно-волновой природы любого микрообъекта, привела к нивелированию этого представления. Выявление тесной взаимосвязи вещества и поля привело к углублению представлений о структуре материи. На этой основе были строго разграничены понятия вещества и материи, отождествлявшиеся в науке много веков.

  Изучением свойств вещества в его различных агрегатных состояниях занимаются физика твердого тела, физика жидкостей и газов, физика плазмы. Свойства и структуру материи на микроскопическом уровне изучают атомная физика, ядерная физика, физика элементарных частиц. Распределение и структуру материи во Вселенной изучает астрофизика.

  Важнейшее свойство материи – ее структурная и системная организация, которая выражает упорядоченность существования материи в виде огромного разнообразия материальных объектов различных масштабов и уровней, связанных между собой единой системой иерархии. Непосредственно наблюдаемые нами тела состоят из молекул, молекулы – из атомов, атомы – из ядер и электронов, атомные ядра – из нуклонов, нуклоны – из кварков. Сегодня принято считать, что электроны и гипотетические частицы кварки не содержат более мелких частиц.

  С биологической точки зрения самая  крупная живая система – биосфера – состоит из биоценозов, содержащих множество популяций живых организмов различных видов, а популяции  образуют отдельные особи, живой  организм которых состоит из клеток со сложной структурой, включающих ядро, мембрану и другие составные части.

  В современном естествознании множество  материальных систем принято условно  делить на микромир, макромир и мегамир. К микромиру относятся молекулы, атомы и элементарные частицы. Материальные объекты, состоящие из огромного числа атомов и молекул, образуют макромир. Самую крупную систему материальных объектов составляет мегамир – мир планет, звезд, галактик и Вселенной.

  Материальные  системы микро-, макро– и мегами-ра различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются.

  Отношение самого большого размера к самому малому, составляющее сегодня 44 порядка, возрастало и будет возрастать по мере накопления естественно-научных знаний об окружающем мире.

  Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро– и мегамира.

  Материальные  объекты микро-, макро– и мегамира отличаются друг от друга не только своими размерами, но и другими количественными характеристиками. Так, один моль любого вещества содержит огромное число молекул или атомов, называемое постоянной Авогадро и примерно равное 6 х 1023моль-1.

  Свойства  и особенности материальных объектов микро-, макро– и мегамира описываются разными теориями, принципами и законами. При объяснении процессов в микромире используются принципы и теории квантовой механики, квантовой статистики и т. п. Изучение материальных объектов макросистем основано на законах и теориях классической механики Ньютона, термодинамики и статической физики, классической электродинамики Максвелла. Вместе с тем многие понятия и концепции (энергия, импульс и др.), введенные в классической физике для описания свойств материальных объектов макромира, с успехом используются для объяснения процессов в микро-и мегамире. Движение планет Солнечной системы описывается законом всемирного тяготения и законами Кеплера. Происхождение и эволюция Вселенной объясняются на основании комплекса естественнонаучных знаний, включающих физику элементарных частиц, квантовую теорию поля и т. п.

  Материальные  объекты образуют целостную систему  лишь в том случае, если энергия  связи между ними больше кинетической энергии каждого из них. Энергия  связи – это та энергия, которую необходимо затратить, чтобы полностью «растащить» систему на отдельные ее составляющие. 

  98. Открытые системы.  Обратимые и необратимые  процессы. Состояние  химического равновесия. Динамическое равновесие. Термодинамическое  и кинетическое  условия состояния равновесия. Какими параметрами характеризуются состояние равновесия? Какой процесс называют смещением химического равновесия? 

     Основным  понятием термодинамики является понятие  энтропии как меры способности теплоты  к превращению. Энтропия характеризует  меру внутренней неупорядоченности системы. Она свойственна изолированным, то есть закрытым системам, находящимся в тепловом равновесии с окружающей средой. По отношению к закрытым системам были сформулированы и два закона (начала) термодинамики.

     Качественное  отличие закрытой (замкнутой) системы от открытой в том, что в первой тоже может сохраняться неравновесная ситуация, однако до тех пор, покуда система за счет своих внутренних процессов не достигнет равновесия, при котором энтропия будет максимальной. Иное дело в открытых системах, которые обмениваются энергией с окружающей средой. Здесь за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией. Иначе говоря, система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы «сбрасывает» ее избыток, возрастающий за счет внутренних процессов, в окружающую среду. В живых организмах это происходит за счет дыхания, экскреции. Открытая система как бы «питается» отрицательной энтропией (негэнтропией), выбрасывая наружу положительную. При этом возникают новые устойчивые неравновесные, но близкие к равновесию состояния. При таком неравновесии рассеивание энергии минимально и интенсивность роста энтропии оказывается меньше, чем в других близких состояниях. Здесь имеет место принцип производства минимума энтропии. Открытые системы – это необратимые системы. Для них весьма важен фактор времени.

Информация о работе Контрольная работа по "Психологии"