Автор работы: Пользователь скрыл имя, 03 Января 2011 в 11:32, реферат
Мендель занимался опытами в области ботаники, в частности – тогда он занимался опытами по направленному культивированию растений, которые позднее сошли на нет. Мендель доставлял из дальних и ближних окрестностей Брюнна растения, которые особенно интересовали его из-за своей атипичности, и приносил домой, чтобы культивировать в специально для него отведенной части монастырского сада при различных внешних условиях.
1. Опыты над растительными гибридами, (первый закон Менделя) ---------- 3
2. Первый закон Менделя ------------------------------------------------------------- 6
3. Второй закон Менделя ---------------------------------------------------------------------- 9
4. Третий закон Менделя ------------------------------------------------------------ 11
Список литературы --------------------------------------------------------------------- 15
При слиянии мужских и женских гамет получается гибрид с диплоидным набором хромосом:
Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину – от материнского.
В процессе образования гамет у
гибрида гомологичные хромосомы во
время I мейотического деления также попадают
в разные клетки:
По данной аллельной паре образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25 % генотипов будут гомозиготными доминантными, 50 % — гетерозиготными, 25 % — гомозиготными рецессивными, т. е. устанавливается отношение 1АА:2Аа:1аа.
Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 ( 3/4 особей с доминантным признаком, 1/4 особей с рецессивным).
Таким
образом, при моногибридном скрещивании
цитологическая основа расщепления потомства
— расхождение гомологичных хромосом
и образование гаплоидных половых клеток
в мейозе.
Третий закон Менделя
Закон независимого комбинирования, или третий закон Менделя. Изучение Менделем наследования одной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доминирования, неизменность рецессивных аллелей у гибридов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары. Однако организмы различаются по многим генам. Установить закономерности наследования двух пар альтернативных признаков и более можно путем дигибридного или полигибридного скрещивания.
Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам — окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям:
При слиянии гамет все потомство будет единообразным:
При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, оа. Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали — гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет .
Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких, 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т. е. независимо от другой пары признаков.
При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов.
Независимое
распределение генов в
Теперь можно сформулировать третий закон Менделя: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.
Законы Менделя служат основой для анализа расщепления в более сложных случаях: при различиях особей по трем, четырем парам признаков и более.
Если родительские формы различаются
по одной паре признаков, то во втором
поколении наблюдается
Анализирующее скрещивание. Разработанный Менделем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам). Для этого в потомстве образуются четыре группы фенотипов в отношении 1:1:1:1.:
Затем
скрещивают особь с неизвестным
генотипом и организм, гомозиготный
по рецессивной аллели. В случае гомозиготности
доминантной особи потомство от такого
скрещивания будет единообразным и расщепление
не произойдет. Иная картина получится,
если доминантная форма гетерозиготна:
Расщепление потомства по фенотипу
произойдет в отношении 1:1. Такое
расщепление – прямое доказательство
образования у одного из родителей двух
типов гамет, т. е. его гетерозиготности.
При гетерозиготности организма по двум
генам анализирующее скрещивание выглядит
так:
Список литературы