Шпаргалка по "Программированию"

Автор работы: Пользователь скрыл имя, 29 Марта 2011 в 16:28, шпаргалка

Краткое описание

Работа содержит ответы на вопросы по дисциплине "Программирование".

Содержимое работы - 23 файла

билет 1.doc

— 52.00 Кб (Открыть файл, Скачать файл)

Билет 10.doc

— 70.00 Кб (Открыть файл, Скачать файл)

билет 11.doc

— 226.50 Кб (Открыть файл, Скачать файл)

Билет 12.doc

— 73.00 Кб (Скачать файл)

Билет № 12

1) Жизненный цикл информационных систем: каскадная и спиральная модели.

Под жизненным  циклом системы обычно понимается непрерывный  процесс, который начинается с момента  принятия решения о необходимости  создания системы и заканчивается  в момент ее полного изъятия из эксплуатации. \

Под моделью  жизненного цикла понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении жизненного цикла. Модель жизненного цикла  зависит от специфики информационной системы и специфики условий, в которых последняя создается и функционирует

Каскадная модель

В не очень больших по объему однородных информационных систем каждое приложение представляло собой единое целое. Для разработки такого типа приложений применялся каскадный способ. Его основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рис. 1). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Положительные стороны применения каскадного подхода  заключаются в следующем:

на каждом этапе  формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

выполняемые в  логичной последовательности этапы  работ позволяют планировать  сроки завершения всех работ и  соответствующие затраты.

Рис. 1. Каскадная  схема разработки

Однако в процессе использования этого подхода  обнаружился ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания систем никогда полностью не укладывался в такую жесткую схему. В процессе создания постоянно возникала потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания программного обеспечения принимал следующий вид (рис. 2):

Рис. 1.2. Реальный процесс разработки ПО по каскадной схеме

Основным недостатком  каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к информационным системам "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания программного обеспечения, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. Сущность системного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. Таким образом, данная модель основным достоинством имеет системность разработки, а основные недостатки - медленно и дорого.

Спиральная  модель

спиральная модель жизненного цикла (рис. 3), делающая упор на начальные этапы жизненного цикла: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом,углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.

Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет  переходить на следующий этап, не дожидаясь  полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований.

Основная проблема спирального цикла - определение  момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход  осуществляется в соответствии с  планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Рис 3. Спиральная модель ЖЦ ИС

Одним из возможных  подходов к разработке программного обеспечения в рамках спиральной модели жизненного цикла является получившая в последнее время широкое  распространение методология быстрой  разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки программного обеспечения, содержащий 3 элемента:

небольшую команду  программистов (от 2 до 10 человек);

короткий, но тщательно  проработанный производственный график (от 2 до 6 мес.);

повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют  в продукте требования, полученные через взаимодействие с заказчиком.

Жизненный цикл программного обеспечения по методологии RAD  состоит из четырех фаз:

фаза определения  требований и анализа;

фаза проектирования;

фаза реализации;

фаза внедрения. 
 

2) Биометрические средства идентификации и аутентификации пользователей. Аутентификация субъектов в распределенных системах, проблемы и решения. Схема Kerberos.

Идентификация (Identification) — процедура распознавания  пользователя по его идентификатору (имени). Эта функция выполняется, когда пользователь делает попытку  войти в сеть. Пользователь сообщает системе по ее запросу свой идентификатор, и система проверяет в своей базе данных его наличие.

Аутентификация {Authentication) — процедура проверки подлинности заявленного пользователя, процесса или устройства. Эта проверка позволяет достоверно убедиться, что пользователь (процесс или устройство) является именно тем, кем себя объявляет. При проведении аутентификации проверяющая сторона убеждается в подлинности проверяемой стороны, при этом проверяемая сторона тоже активно участвует в процессе обмена информацией. Обычно пользователь подтверждает свою идентификацию, вводя в систему уникальную, не известную другим пользователям информацию о себе (например, пароль или сертификат).

биометрическая  аутентификация пользователя, позволяющая уверенно аутентифицировать потенциального пользователя путем измерения физиологических параметров и характеристик человека, особенностей его поведения. Основные достоинства биометрических методов:

высокая степень  достоверности аутентификации по биометрическим признакам (из-за их уникальности);

неотделимость биометрических признаков от дееспособной личности;

трудность фальсификации  биометрических признаков.

 Активно используются  следующие биометрические признаки:

отпечатки пальцев;

геометрическая  форма кисти руки;

форма и размеры  лица;

особенности голоса;

узор радужной оболочки и сетчатки глаз.

Рассмотрим типичную схему функционирования биометрической подсистемы аутентификации. При регистрации в системе пользователь должен продемонстрировать один или несколько раз свои характерные биометрические признаки. Эти признаки (известные как подлинные) регистрируются системой как контрольный «образ» (биометрическая подпись) законного пользователя. Этот образ пользователя хранится системой в электронной форме и используется для проверки идентичности каждого, кто выдает себя за соответствующего законного пользователя. В зависимости от совпадения или несовпадения совокупности предъявленных признаков с зарегистрированными в контрольном образе предъявивший их признается законным пользователем (при совпадении) или незаконным (при несовпадении).

Аутентификация  по отпечаткам пальцев. Преимущества средств  доступа по отпечатку пальца - простота использования, удобство и надежность. Весь процесс идентификации осуществляется довольно быстро и не требует особых усилий от пользователей.

Использование для идентификации геометрии  руки. Преимущества идентификации по геометрии ладони сравнимы с аутентификацией  по отпечатку пальца в вопросах надежности, Наиболее удачное устройство, Handkey, сканирует как внутреннюю, так и боковую сторону руки.

Аутентификация  по радужной оболочке глаза. Преимущество сканирования радужной оболочки состоит  в том, что образец пятен на радужной оболочке находится на поверхности  глаза. видеоизображение может быть отсканировано на расстоянии метра, что делает возможным использование таких сканеров в банкоматах.

Аутентификация  по сетчатке глаза. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. эти средства аутентификации характеризуются одним из самых низких процентов отказа в доступе. Однако такая болезнь глаз, как катаракта, может отрицательно воздействовать на качество получаемого изображения и увеличивать ошибки системы.

Идентификация по чертам лица (по геометрии лица) - Данный метод наиболее близок к тому, как люди идентифицируют друг друга, Развитие этого направления связано с быстрым ростом мультимедийных видео-технологий.  

??Аутентификация  субъектов в распределенных системах, проблемы и решения???

взаимная аутентификация субъектов, т. е. взаимное подтверждение подлинности субъектов, связывающихся между собой по линиям связи. Процедура подтверждения подлинности выполняется обычно в начале сеанса установления соединения абонентов. Термин «соединение» указывает на логическую связь (потенциально двустороннюю) между двумя субъектами сети. Цель данной процедуры — обеспечить уверенность, что соединение установлено с законным субъектом и вся информация дойдет до места назначения.

Для подтверждения  своей подлинности субъект может  предъявлять системе разные сущности. В зависимости от предъявляемых субъектом сущностей процессы аутентификации могут быть разделены на основе:

знания чего-либо.

обладания чем-либо.

Kerberos – это программный продукт, компоненты которого присутствуют в большинстве современных операционных систем.

Kerberos предназначен для решения следующей задачи. Имеется открытая (незащищенная) сеть, в узлах которой сосредоточены субъекты – пользователи, а также клиентские и серверные программные системы. Каждый субъект обладает секретным ключом. Чтобы субъект C мог доказать свою подлинность субъекту S (без этого S не станет обслуживать C), он должен не только назвать себя, но и продемонстрировать знание секретного ключа. C не может просто послать S свой секретный ключ, во-первых, потому, что сеть открыта (доступна для пассивного и активного прослушивания), а, во-вторых, потому, что S не знает (и не должен знать) секретный ключ C. Требуется менее прямолинейный способ демонстрации знания секретного ключа.

Система Kerberos представляет собой доверенную третью сторону (то есть сторону, которой доверяют все), владеющую секретными ключами обслуживаемых субъектов и помогающую им в попарной проверке подлинности.

Чтобы с помощью Kerberos получить доступ к S (обычно это  сервер), C (как правило – клиент) посылает Kerberos запрос, содержащий сведения о нем (клиенте) и о запрашиваемой услуге. В ответ Kerberos возвращает так называемый билет, зашифрованный секретным ключом сервера, и копию части информации из билета, зашифрованную секретным ключом клиента. Клиент должен расшифровать вторую порцию данных и переслать ее вместе с билетом серверу. Сервер, расшифровав билет, может сравнить его содержимое с дополнительной информацией, присланной клиентом. Совпадение свидетельствует о том, что клиент смог расшифровать предназначенные ему данные (ведь содержимое билета никому, кроме сервера и Kerberos, недоступно), то есть продемонстрировал знание секретного ключа. Значит, клиент – именно тот, за кого себя выдает. Подчеркнем, что секретные ключи в процессе проверки подлинности не передавались по сети (даже в зашифрованном виде) – они только использовались для шифрования. Как организован первоначальный обмен ключами между Kerberos и субъектами и как субъекты хранят свои секретные ключи – вопрос отдельный.

Проиллюстрируем описанную процедуру.

 
Рис. 10.1.  Проверка сервером S подлинности клиента C.

Здесь c и s –  сведения (например, имя), соответственно, о клиенте и сервере, d1 и d2 – дополнительная (по отношению к билету) информация, Tc.s – билет для клиента C на обслуживание у сервера S, Kc и Ks – секретные ключи клиента и сервера, {info}K – информация info, зашифрованная ключом K. 
 

Билет 13.doc

— 140.50 Кб (Открыть файл, Скачать файл)

Билет 14.doc

— 106.00 Кб (Открыть файл, Скачать файл)

Билет 15.doc

— 115.00 Кб (Открыть файл, Скачать файл)

Билет 16.doc

— 148.00 Кб (Открыть файл, Скачать файл)

Билет 17.doc

— 67.00 Кб (Открыть файл, Скачать файл)

Билет 18.doc

— 86.00 Кб (Открыть файл, Скачать файл)

Билет 19.doc

— 169.00 Кб (Открыть файл, Скачать файл)

Билет 2.doc

— 61.50 Кб (Открыть файл, Скачать файл)

Билет 20.doc

— 102.00 Кб (Открыть файл, Скачать файл)

Билет 3.doc

— 54.00 Кб (Открыть файл, Скачать файл)

Билет 4.doc

— 82.50 Кб (Открыть файл, Скачать файл)

Билет 5.doc

— 46.50 Кб (Открыть файл, Скачать файл)

Билет 6.doc

— 117.00 Кб (Открыть файл, Скачать файл)

Билет 7.doc

— 86.50 Кб (Открыть файл, Скачать файл)

Билет 8.doc

— 77.50 Кб (Открыть файл, Скачать файл)

Билет 9.doc

— 45.00 Кб (Открыть файл, Скачать файл)

Билеты.doc

— 42.50 Кб (Открыть файл, Скачать файл)

ГОТОВОЕ шпоры с 16 вопроса.doc

— 220.50 Кб (Открыть файл, Скачать файл)

ГОТОВОЕ шпоры.doc

— 828.50 Кб (Скачать файл)

Информация о работе Шпаргалка по "Программированию"