Сетевые технологии обработки данных

Автор работы: Пользователь скрыл имя, 10 Января 2013 в 19:27, курсовая работа

Краткое описание

Сетевые технологии представляют собой одно из направлений развития систем обработки данных, которое возникло в связи с необходимостью объединения территориально рассредоточенных вычислительных средств в единую систему. Сетевые технологии обеспечивают пользователю широкий набор услуг и позволяют создавать целый ряд различных по назначению автоматизированных систем распределённой обработки информации. Наиболее значимыми технологиями обработки передаваемых данных (пакетов) являются коммутация и маршрутизация

Содержание работы

Введение ………………………………………………………………….………………. 2
Информационные технологии обработка данных …………….…………………… 3
Сетевые технологии обработки данных ……………………………………..……... 6
Глобальные вычислительные сети, Интернет ……………………………………. 10
Заключение ………………………………………………………………….…………… 13
Список литературы ……………………………………………………….……………15

Содержимое работы - 1 файл

Сетевых технологии обработки данных(курсовая) .doc

— 116.50 Кб (Скачать файл)

Оглавление

 

Введение ………………………………………………………………….……………….  2

Информационные технологии обработка данных …………….…………………… 3

Сетевые  технологии обработки данных ……………………………………..……... 6

Глобальные вычислительные сети, Интернет ……………………………………. 10

Заключение ………………………………………………………………….…………… 13

Список литературы ……………………………………………………….……………15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

      Сетевые технологии представляют собой одно из направлений развития систем обработки данных, которое возникло в связи с необходимостью объединения территориально рассредоточенных вычислительных средств в единую систему. Сетевые технологии обеспечивают пользователю широкий набор услуг и позволяют создавать целый ряд различных по назначению автоматизированных систем распределённой обработки информации.

      Наиболее значимыми технологиями обработки передаваемых данных (пакетов) являются коммутация и маршрутизация. До недавнего времени эти два понятия имели абсолютно разные значения – как по технологии обработки пакетов, так и по уровням модели OSI, на которых работают оба эти метода управления данными в сети, – и не могло быть и речи, чтобы объединить эти понятия. Сегодня развитие сетевых технологий идёт быстрыми темпами. Всё возрастающий объём передаваемой информации, физический рост сетей и межсетевого трафика подстегивают производителей к выпуску всё более мощных

и «умных» устройств, использующих новые (совсем новые или  комбинации традиционных) методы передачи и сортировки данных, а также коммутации и маршрутизации, и методы их комбинирования для оптимизации межсетевого трафика и увеличения производительности.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Информационные технологии обработка данных

1.1. Распределенная обработка данных

В эпоху централизованного использования  ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых было бы решать почти все классы их задач. Однако сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Также доступ к ресурсам компьютеров был затруднен из-за существующей ней централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных не отвечал высоким требованиям к надежности процесса обработки и затруднял развитие систем. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом. Появление персональных компьютеров потребовало нового подхода к организации систем обработки данных. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных.

Распределенная обработка  данных — обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Для реализации распределенной обработки  данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

·        многомашинные вычислительные комплексы (МВК);

·        компьютерные (вычислительные) сети.

Многомашинный вычислительный комплекс — группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс.

Многомашинные вычислительные комплексы могут быть:

·        локальными при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

·        дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.

Пример1. Три ЭВМ объединены в комплекс для распределения заданий, поступающих на обработку. Одна из них выполняет диспетчерскую функцию и распределяет задания в зависимости от занятости одной из двух других обрабатывающих ЭВМ. Это локальный многомашинный комплекс.

Пример 2. ЭВМ, осуществляющая сбор данных по некоторому региону, выполняет их предварительную обработку и передает для дальнейшего использования на центральную ЭВМ по телефонному каналу связи. Это дистанционный многомашинный комплекс.

Компьютерная (вычислительная) сеть — совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Примечание. Под системой понимается автономная совокупность, состоящая из одной или нескольких ЭВМ, программного обеспечения, периферийного оборудования, терминалов, средств передачи данных, физических процессов и операторов, способная осуществлять обработку информации и выполнять функции взаимодействия с другими системами.

1.2. Обобщенная структура компьютерной сети

Компьютерные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерной сети от многомашинного вычислительного комплекса:

1.     Размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до тысяч километров.

2.     Разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи данных и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции распределены между различными ЭВМ.

3.     Необходимость решения в сети задачи маршрутизации сообщений. Сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

Абоненты сети — объекты, генерирующие или потребляющие информацию в сети (это м.б.: отдельные ЭВМ, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т.д.). Любой абонент сети подключается к станции.

Станция — аппаратура, которая выполняет функции, связанные с передачей и приемом информации

Совокупность абонента и станции  принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда.

Физическая передающая среда — линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных.

На базе физической передающей среды  строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами.

1.3 Классификация вычислительных сетей

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

·        глобальные сети (WAN — Wide Area Network);

·        региональные сети (MAN — Metropolitan Area Network); N

·        локальные сети (LAN—Local Area Network).

Глобальная вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно расстояние между абонентами региональной вычислительной сети составляет десятки — сотни километров.

Локальная вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории: В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 км.

Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. Пример иерархии КС приведен на рисунке.

Практика применения персональных компьютеров в различных  отраслях науки техники и производства показала, что наибольшую эффективность  от внедрения вычислительной техники  обеспечивают не отдельные автономные ПК, а локальные вычисли тельные сети.

 

Сетевые технологии

2.1 Локальные вычислительные сети

Локальная вычислительная сеть (ЛВС) представляет собой группу ПК, а  также периферийное оборудование, объединенные одним или несколькими автономными высокоскоростными каналами передачи цифровых данных (в том числе проводными, волоконно-оптическими, радио - СВЧ или ИК-диапазона) в пределах одного или нескольких близлежащих зданий. ЛВС служит для решения комплекса взаимосвязанных функциональных и/или информационных задач (например, в рамках какой-либо организации или ее автоматизированной системы), а также совместного использования объединенных информационных и вычислительных ресурсов. В зависимости от принципов построения ЛВС подразделяются на виды: «клиент-серверная», «файл-серверная», а также «одноранговые». ЛВС могут иметь в своем составе средства для выхода в распределенные и глобальные вычислительные сети.

 

2.2 Архитектура ЛВС

Клиент-сервер. Архитектура, в которой производится разделение вычислительной нагрузки между включенными в ее состав ЭВМ, выполняющими функции клиентов, и одной мощной центральной ЭВМ — сервером. В частности, процесс наблюдения за данными отделен от программ, использующих эти данные. Например, сервер может поддерживать центральную базу данных, расположенную на большом компьютере, зарезервированном для этой цели. Клиентом будет обычная программа, расположенная на любой ЭВМ, включенной в сеть, а также сама ЭВМ, которая по мере необходимости запрашивает данные с сервера. Производительность при использовании клиент-серверной архитектуры выше обычной, поскольку как клиент, так и сервер делят между собой нагрузку по обработке данных. Другими достоинствами клиент-серверной архитектуры являются: большой объем памяти и ее пригодность для решения разнородных задач, возможность подключения большого количества рабочих станций, включая ПЭВМ и пассивные терминалы.

Файл-сервер. Архитектура  построения ЛВС, основанная на использовании  файлового сервера(file server) - относительно мощной ЭВМ, управляющей созданием, поддержкой и использованием общих информационных ресурсов локальной сети, включая доступ к ее базам данных (БД) и отдельным файлам, а также их защиту. В отличие от клиент-серверной архитектуры данный принцип построения сети предполагает, что включенные в нее рабочие станции являются полноценными ЭВМ с установленным на них полным объемом необходимого для независимой работы составом средств основного и прикладного программного обеспечения. Другими словами, в указанном случае отсутствуют возможности разделения вычислительной нагрузки между сервером и терминалами сети, характерные для архитектуры типа клиент-сервер, и, как следствие, общие стоимостные показатели цена/производительность сети в целом могут быть хуже.

Одноранговая ЛВС. «Безсерверная» организация построения сети, которая допускает включение в нее как ЭВМ различной мощности, так и терминалов ввода-вывода. Термин «одноранговая сеть» означает, что все терминалы сети имеют в ней одинаковые права. Каждый пользователь одноранговой сети может определить состав файлов, которые он предоставляет для общего использования (так называемые public files). Таким образом, пользователи одноранговой сети могут работать как со всеми своими файлами, так и с файлами, предоставляемыми другими ее пользователями. Известны три основных варианта топологии одноранговой сети, которые носят наименования «шина», «кольцо» и «звезда». Достоинствами одноранговых ЛВС являются относительная простота их установки и эксплуатации, умеренная стоимость, возможность развития (например, по числу включенных в них терминалов), независимость выполняемых вычислительных и других процессов для каждой включенной в сеть ЭВМ.

2.3 Топология ЛВС

Топология - принцип построения сетевых соединений. Примерами являются топологии «Звезда», «Кольцо», «Шина» и «Дерево».

«Шина»: топология сети, все станции которой подсоединены к одному кабелю. Каждая станция  принимает сигналы, переданные любой  другой станцией, распознает предназначенные  ей пакеты и имеет возможность  проигнорировать к ней не относящиеся.

«Кольцо»: топология сети, все станции  которой соединены только с двумя  соседними. Все данные в этой сети передаются от одной станции к  другой в одном направлении. Каждая станция работает как повторитель. Недостатком является и тот факт, что в случае выхода из строя одной из станций кольцо "разрывается". Однако большинство сетей, основанных на этой топологии, имеют средства автоматического восстановления работоспособности после отказа узла.

«Звезда»: топология сети, в которой  соединения между станциями или  узлами сети устанавливаются через  концентратор.

2.4 Варианты построения локальных вычислительных сетей

AppleTalk - наименование технологии  и средств программного обеспечения для создания кабельных одноранговых ЛВС небольших организаций (например, издательств, имеющих несколько ПК и 1-2 принтера в одном здании) на базе ПК Macintosh фирмы Apple. Расстояние между наиболее удаленными узлами в этой сети не должно превышать 500 м.

ARCnet (Attached Resource Computing Network) - нестандартная  сетевая архитектура, разработанная  корпорацией Datapoint в середине 1970-х  гг. Метод доступа основан на  передаче маркера в сети с  шинной топологией. Недостатком  этой архитектуры является невысокая скорость передачи данных (2,5 Мбит/с). Отличительной особенностью этой архитектуры является возможность использования весьма длинных сегментов (до нескольких километров).

Информация о работе Сетевые технологии обработки данных