Автор работы: Пользователь скрыл имя, 26 Февраля 2012 в 11:36, реферат
С начала 80-х годов 20 века, в связи с массовым производством и внедрением персональных компьютеров (ПК), идея системной автоматизации процесса проектирования становится практически осуществимой для проектных организаций любого масштаба: от крупного института до частного бюро. Понятие САПР, с одной стороны, упростилось и зачастую ассоциируется с той или иной компьютерной программой. С другой стороны, проектирование сложных технических объектов возможно лишь в рамках САПР как организационно-технической системы, в основе которой - весь потенциал информационных технологий.
Введение………………………………………………………………………….… 3
1. Математическое обеспечение САПР……...........................................…….… 4-5
1.1. Требования к математическому обеспечению…………………………5-8
2. Математическое моделирование объектов и устройств автоматизации
в САПР ……………………………………………………………………………8
2.1. Классификация математических моделей….………….…….…………8-10
2.2 Методика получения математических моделей элементов и устройств
автоматизации ……………………………………………………………….10-12
Список использованной литературы……………………………………………13
Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические.
а) В топологических ММ отображаются состав и взаимосвязи элементов. Их чаще всего применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определенным пространственным позициям (например, задачи компоновки оборудования, размещения деталей, трассировки соединений) или к относительным моментам времени (например, при разработке расписаний, технологических процессов). Топологические модели могут иметь форму графов, таблиц (матриц), списков и т.п.
б) В геометрических ММ отображаются свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; совокупностью алгебраических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов, и т.п. Геометрические ММ применяют при решении задач конструирования в машиностроении, приборостроении, радиоэлектронике, для оформления конструкторской документации, при задании исходных данных на разработку технологических процессов изготовления деталей.
Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.
2. По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели.
Полная модель - эта модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т.е. состояние всех элементов проектируемого объекта).
Макромодель - ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.
3. По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические.
Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров.
Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма.
2.2 Методика получения математических моделей элементов и устройств автоматизации
Использование принципов блочно-иерархического подхода к проектированию структур математических моделей проектируемых объектов позволяет формализовать процесс их написания. Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако иерархические уровни большинства предметных областей можно отнести к одному из трех обобщенных уровней: микро-, макро- и метауровни. На каждом иерархическом уровне проектирования различают понятия математических моделей системы (ММС) и элемента (ММЭ) системы.
В общем случае процедура получения математических моделей элементов и устройств включает в себя следующие операции:
В зависимости от места в иерархии описания математические модели делятся на ММ, относящиеся к микро-, макро- и метауровням.
Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывном пространстве и времени. Типичные ММ на микроуровне - дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрические потенциалы и напряжения, давления и температуры и т.п. Возможности применения ММ в ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти. Общий вид ДУЧП:
(2.1)
где Z=(t,x1,x2,x3) — вектор независимых переменных; f(Z) — функция, выражающая заданные внешние воздействия на исследуемую среду; L—дифференциальный оператор; φ(Z) —функция, определяемая природой описываемого объекта.
На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ):
(2.2)
где V—вектор фазовых переменных.
В этих уравнениях независимой переменной является время t, а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости в механических системах, напряжения и токи в электрических системах, давления и расходы жидкостей и газов в гидравлических и пневматических системах и т.п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10000, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.
На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние фазовые переменные элементы, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, укрупненное представление элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем размерность ММ на макроуровне. Одним из наиболее общих подходов к анализу объектов на метауровне является функциональное моделирование, развитое для анализа систем автоматического управления. Другим достаточно общим подходом к анализу объектов на метауровне является их представление моделями систем массового обслуживания (СМО). Модели СМО применимы во всех тех случаях, когда исследуемый объект предназначен для обслуживания многих заявок, поступающих в СМО в нерегулярные моменты времени. Особенностью моделей СМО является наличие в них элементов двух различных типов: обслуживающих аппаратов, иначе называемых ресурсами, и заявок, называемых также транзактами.
Список использованной литературы
1. http://www.hi-edu.ru/e-books/
2. http://www.intuit.ru/
3. http://seniga.ru/index.php/
4. http://tadviser.ru/a/53807
13