Автор работы: Пользователь скрыл имя, 29 Февраля 2012 в 20:39, реферат
Оптика – это учение о физических явлениях, связанных с распространением коротких электромагнитных волн, длина которых составляет приблизительно 10-5 – 10-7 м. Значение именно этой области спектра электромагнитных волн связанно с тем, что внутри неё в узком интервале длин волн от 0,4 до 0,76 мкм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом.
или после преобразования mD x + cx = cd sin pt.
Разделив все члены уравнения на mD и введя обозначения
приведём дифференциальное уравнение к следующему виду:
Решение этого неоднородного уравнения складывается из общего решения х*, соответствующего однородного уравнения и частного решения х** данного неоднородного уравнения:
Частное решение неоднородного уравнения:
Общий интеграл
x = C1 cos kt +C2 sin kt + [ h /(k2 – p2)] sin pt.
Для определения постоянных интегрирования С1 и С2 найдём, кроме того, уравнение для х
x = -C1 k sin kt +C2 k cos kt + [ hp/(k2 – p2)] cos pt
и используем начальные условия задачи.
Рассматриваемое движение начинается в момент (t=0), когда деформация пружины является статической деформацией под действием грузов D и E. При принятом положении начала отсчёта О начальная координата груза D равна x0 = -fст E, причём fст E = GE sin α/c – статическая деформация пружины под действием груза Е.
Таким образом, при t=0
x0 = -fст E, x0 = 0.
Составим уравнение x = x(t) и x = x(t) для t=0:
откуда
C1 = -fст E, C2 = -hp/[ k( k2 – p2)].
Уравнение движения груза D имеет следующий вид:
x = -fст E cos kt – hp/[ k( k2 – p2)] sin kt + h/( k2 – p2) sin pt.
Найдём числовое значение входящих в уравнение величин:
fст E = GE sin α/c = 3 ∙9,81∙0,5 /6 ∙100 = 0,0245 м.
h/( k2 – p2) = cd/mD( k2 – p2) = 600 ∙0,02/0,25(2400 – 100) = 0,021 м;
hp/ k( k2 – p2) = 0,021 ∙10 /49 = 0,0043 м.
Следовательно, уравнение движения груза D
x = -2,45 cos 49t – 0,43 sin 49t +2,1 sin 10t (см).
по
теоретической механике
на тему:
Световые колебания
Выполнил: студент гр. ПСТ Башев А.Н.
Проверил: к.т.н. Краснов В.Г.
Нижневартовск 2000.