Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 20:22, реферат
Инфразвук (от латинского infra - ниже, под), упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16--25 Гц. Нижняя граница инфразвукового диапазона неопределенна. Практический интерес могут представлять колебания от десятых и даже сотых долей Гц., т. е. с периодами в десяток секунд. Обычно слух человека воспринимает колебания в пределах 16-20000 Гц (колебаний в секунду). Инфразвук вызывает нервное перенапряжение, недомогание, головокружение, изменение деятельности внутренних органов, особенно нервной и сердечно - сосудистой систем.
Р е ф е р а т
по дисциплине: физика биологических систем
на тему: Ультразвуки и инфразвуки в природе и технике
Введение
Инфразвук (от латинского infra - ниже, под), упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16--25 Гц. Нижняя граница инфразвукового диапазона неопределенна. Практический интерес могут представлять колебания от десятых и даже сотых долей Гц., т. е. с периодами в десяток секунд. Обычно слух человека воспринимает колебания в пределах 16-20000 Гц (колебаний в секунду). Инфразвук вызывает нервное перенапряжение, недомогание, головокружение, изменение деятельности внутренних органов, особенно нервной и сердечно - сосудистой систем.
Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказания стихийного бедствия -- цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды. "Голос моря" - это инфразвуковые волны, возникающие над поверхностью моря при сильном ветре, в результате вихреобразования за гребнями волн. Вследствие того, что для инфразвука характерно малое поглощение, он может распространяться на большие расстояния, а поскольку скорость его распространения значительно превышает скорость перемещения области шторма, то "голос моря" может служить для заблаговременного предсказания шторма. Своеобразными индикаторами шторма являются медузы. На краю "колокола" у медузы расположены примитивные глаза и органы равновесия - слуховые колбочки величиной с булавочную головку. Это и есть "уши" медузы. Они слышат инфразвуки с частотой 8 - 13 Гц. Шторм разыгрывается еще за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину. Длина инфразвуковой волны весьма велика (на частоте 3.5 Гц она равна 100 метрам), проникновение в ткани тела также велико. Можно сказать, что человек слышит инфразвук «всем телом».
Понятие «ультразвук» приобрело в настоящее время более широкий смысл, чем просто обозначение высокочастотной части спектра акустических волн. С ним связаны целые области современной физики, промышленной технологии, информационной и измерительной техники, медицины и биологии. Хотя первые ультразвуковые исследования были выполнены ещё в позапрошлом веке, основы широкого практического применения ультразвука были заложены позже, в 1-й трети 20 в. Как область науки и техники ультразвук получил особенно бурное развитие в последние три-четыре десятилетия. Это связано с общим прогрессом акустики как науки и, в частности, со становлением и развитием таких её разделов, как нелинейная акустика и квантовая акустика, а также с развитием физики твёрдого тела, электроники и в особенности с рождением квантовой электроники.
Широкое распространение ультразвуковых методов обусловлено появлением новых надёжных средств излучения и приёма акустических волн, с одной стороны, обеспечивших возможность существенного повышения излучаемой ультразвуковой мощности и увеличения чувствительности при приёме слабых сигналов, а с другой -- позволивших продвинуть верхнюю границу диапазона излучаемых и принимаемых волн в область гиперзвуковых частот. Характерной особенностью современного состояния физики и техники ультразвука является чрезвычайное многообразие его применений, охватывающих частотный диапазон от слышимого звука до предельно достижимых высоких частот и область мощностей от долей милливатта до десятков киловатт.
Ультразвук применяется в металлургии для воздействия на расплавленный металл и в микроэлектронике и приборостроении для прецизионной обработки тончайших деталей. В качестве средства получения информации он служит как для измерения глубины, локации подводных препятствий в океане, так и для обнаружения микродефектов в ответственных деталях и изделиях. Ультразвуковые методы используются для фиксации малейших изменений химического состава веществ и для определения степени затвердевания бетона в теле плотины. В области контрольно-измерительных применений ультразвука в самостоятельный, установившийся раздел выделилась ультразвуковая дефектоскопия, возможности которой и разнообразие решаемых ею задач существенно возросли. В самое последнее время сформировались как самостоятельные области акустоэлектроника и акустооптика. Первая из них связана с обработкой электрических сигналов, использующей преобразование их в ультразвуковые. Из устройств акустоэлектроники наиболее известными и давно используемыми являются линии задержки и фильтры. Достижения в области изучения поверхностных волн, генерации и приёма гиперзвуковых волн, установление связи упругих волн с элементарными возбуждениями в твёрдом теле привели к существенному расширению возможностей этих устройств и к созданию новых приборов акустоэлектроники, обеспечивающих более сложную обработку сигналов. Акустооптика, связанная с обработкой световых сигналов посредством ультразвука, является одной из самых молодых и быстро развивающихся областей ультразвуковой техники. К новейшим ультразвуковым методам принадлежит акустическая голография, перспективы которой весьма многообещающи, поскольку она создаёт возможность получения изображений предметов в непрозрачных для световых лучей средах. Рассматривая многообразие практических применений ультразвуковых колебаний и волн, нельзя не упомянуть об ультразвуковой медицинской диагностике, которая даёт в ряде случаев более детальную информацию и является более безопасной, чем другие методы диагностики. Об ультразвуковой терапии, занявшей прочное положение среди современных физиотерапевтических методов, и, наконец, о новейшем направлении применения ультразвука в медицине -- ультразвуковой хирургии. Наряду с применениями практического характера, ультразвук играет важную роль в научных исследованиях. Нельзя себе представить современную физику твёрдого тела без применения ультразвуковых и гиперзвуковых методов, без понятия о фотонах, их поведении и взаимодействиях с различными полями и возбуждениями в твёрдом теле. В изучении жидкостей и газов широко используются методы молекулярной акустики; всё большую роль играют ультразвуковые методы в биологии. Интерес к ультразвуку, к ультразвуковой технике всё возрастает, благодаря его проникновению в самые различные области человеческой деятельности. Растёт число публикаций о нём в газетах и журналах, в популярных изданиях. Инженеры и научные работники, занятые в самых различных областях народного хозяйства и науки, оценивают возможности использования ультразвуковых методов для своих конкретных задач и в связи с этим хотят получить представление о различных аспектах физики и техники ультразвука на современном уровне. Однако имеющаяся научно-техническая литература в настоящее время не в состоянии полностью удовлетворить такую потребность. Известные издания общего характера, посвящённые физике и технике ультразвука, зачастую не соответствуют современному состоянию науки. Опубликованные в последние годы специальные монографии научного и прнкладного характера предназначены для подготовленных читателей, обладающих достаточным запасом знаний в области акустики и смежных разделов физики, например, физики твёрдого тела, или в какой-то определенной, связанной с ультразвуком отрасли техники. В этой работе описаны основные темы, касающиеся инфразвука, ультразвука в природе и технике.
В последнее время все более широкое распространение в производстве находят технологические процессы, основанные на использовании энергии ультразвука. Ультразвук нашел также применение в медицине. В связи с ростом единичных мощностей и скоростей различных агрегатов и машин растут уровни шума, в том числе и в ультразвуковой области частот.
Ультразвуком называют механические колебания упругой среды с частотой, превышающей верхний предел слышимости -20 кГц. Единицей измерения уровня звукового давления является дБ. Единицей измерения интенсивности ультразвука является ватт на квадратный сантиметр (Вт/см2).
Ультразвук обладает главным образом локальным действием на организм, поскольку передается при непосредственном контакте с ультразвуковым инструментом, обрабатываемыми деталями или средами, где возбуждаются ультразвуковые колебания. Ультразвуковые колебания, генерируемые ультразвуком низкочастотным промышленным оборудованием, оказывают неблагоприятное влияние на организм человека. Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома.
Степень выраженности изменений зависит от интенсивности и длительности воздействия ультразвука и усиливается при наличии в спектре высокочастотного шума, при этом присоединяется выраженное снижение слуха. В случае продолжения контакта с ультразвуком указанные расстройства приобретают более стойкий характер.
При действии
локального ультразвука возникают
явления вегетативного
Характер изменений, возникающих в организме под воздействием ультразвука, зависит от дозы воздействия.
Малые дозы - уровень звука 80-90 дБ - дают стимулирующий эффект - микромассаж, ускорение обменных процессов. Большие дозы - уровень звука 120 и более дБ - дают поражающий эффект. Основу профилактики неблагоприятного воздействия ультразвука на лиц, обслуживающих ультразвуковые установки, составляет гигиеническое нормирование.
В соответствии с ГОСТ 12.1.01-89 "Ультразвук. Общие требования безопасности", "Санитарными нормами и правилами при работе на промышленных ультразвуковых установках" (№ 1733-77) ограничиваются уровни звукового давления в высокочастотной области слышимых звуков и ультразвуков на рабочих местах (от 80 до 110 дБ при среднегеометрических частотах третьоктавных полос от 12,5 до 100 кГц).
Меры предупреждения неблагоприятного действия ультразвука на организм операторов технологических установок, персонала лечебно-диагностических кабинетов состоят в первую очередь в проведении мероприятий технического характера. К ним относятся создание автоматизированного ультразвукового оборудования с дистанционным управлением; использование по возможности маломощного оборудования, что способствует снижению интенсивности шума и ультразвука на рабочих местах на 20-40 дБ; размещение оборудования в звуко-изолированных помещениях или кабинетах с дистанционным управлением; оборудование звукоизолирующих устройств, кожухов, экранов из листовой стали или дюралюминия, покрытых резиной, противошумной мастикой и другими материалами.
При проектировании ультразвуковых установок целесообразно использовать рабочие частоты, наиболее удаленные от слышимого диапазона - не ниже 22 кГц.
Чтобы исключить воздействие ультразвука при контакте с жидкими и твердыми средами, необходимо устанавливать систему автоматического отключения ультразвуковых преобразователей при операциях, во время которых возможен контакт (например, загрузка и выгрузка материалов). Для защиты рук от контактного действия ультразвука рекомендуется применение специального рабочего инструмента с виброизолирующей рукояткой.
Если по производственным причинам невозможно снизить уровень интенсивности шума и ультразвука до допустимых значений, необходимо использование средств индивидуальной защиты - противошумов, резиновых перчаток с хлопчатобумажной прокладкой и др.
Развитие техники и транспортны) средств, совершенствование технологических процессов и оборудования сопровождаются увеличением мощности и габаритов машин что обусловливает тенденцию повышения низкочастотных составляющих в спектрах и появление инфразвука, который является сравнительно новым, не полностью изученным фактором производственной среды.
Инфразвуком называют акустические колебания с частого! ниже 20 Гц. Этот частотный диапазон лежит ниже порога слышимости и человеческое ухо не способно воспринимать колебания указанных частот.
Производственный инфразвук возникает за счет тех же процессов что и шум слышимых частот. Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения).
Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ.
Исследования биологического действия инфразвука на организм показали, что при уровне от 110 до 150 дБ и более он может вызывать у людей неприятные субъективные ощущения и многочисленные реактивные изменения, к числу которых следует отнести изменения в центральной нервной, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Имеются данные о том, что инфразвук вызывает снижение слуха преимущественно на низких и средних частотах. Выраженность этих изменений зависит от уровня интенсивности инфразвука и длительности действия фактора.
В соответствии с Гигиеническими нормами инфразвука на рабочих местах (№ 2274-80) по характеру спектра инфразвук подразделяется на широкополосный и гармонический. Гармонический характер спектра устанавливают в октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.
По временным
характеристикам инфразвук
Нормируемыми характеристиками инфразвука на рабочих местах являются уровни звукового давления в децибелах в октавных полосах частот со среднегеометрическими частотами 2, 4, 8, 16 Гц. Допустимыми уровнями звукового давления являются 105 дБ в октавных полосах 2, 4, 8, 16 Гц и 102 дБ в октавной полосе 31,5 Гц. При этом общий уровень звукового давления не должен превышать 110 дБ Лин. Для непостоянного инфразвука нормируемой характеристикой является общий уровень звукового давления.
Наиболее эффективным и практически единственным средством борьбы с инфразвуком является снижение его в источнике. При выборе конструкций предпочтение должно отдаваться малогабаритным машинам большой жесткости, так как в конструкциях с плоскими поверхностями большой площади и малой жесткости создаются условия для генерации инфразвука. Борьбу с инфразвуком в источнике возникновения необходимо вести в направлении изменения режима работы технологического оборудования - увеличения его быстроходности (например, увеличение числа рабочих ходов кузнечно-прессовых машин, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона).
Должны приниматься меры по снижению интенсивности аэродинамических процессов - ограничение скоростей движения транспорта, снижение скоростей истечения жидкостей (авиационные и ракетные двигатели, двигатели внутреннего сгорания, системы сброса пара тепловых электростанций и т.д.).
Информация о работе Ультразвуки и инфразвуки в природе и технике