Ультразвук. Применение ультразвука в медицине

Автор работы: Пользователь скрыл имя, 26 Февраля 2012 в 12:51, реферат

Краткое описание

Ультьразвук – явление с которым мы сталкиваемся почти каждый день в нашей жизни. Оно нашло свое применение проактически во всех сверах деятельности общества: в медицине, в геологии, в промышленности и т.д. Наука об ультразвуке сравнительно молодая. История её берёт начало только в XIX веке. Внимание к акустике было вызвано потребностями морского флота ведущих держав - Англии и Франции, т.к. акустический – единственный вид сигнала, способный далеко распространяться в воде.

Содержание работы

Введение.
I. Ультразвук как физическое явление:
1. Ультразвук как упругие волны
2. Специфические особенности ультразвука
3. Источники и приемники ультразвука
4. Механические излучатели
5. Приемники ультразвука
II. Ультразвук в медицине:
1. Ультразвуковое обследование.
2. Ультразвуковое лечение.
3. Применение ультразвука в узких специальностях:
1. Применение ультразвука в хирургии и анестезиологии.
2. Применение ультразвука в фармакологии.
3. Применение ультразвука в косметологии.
4. Вредно ли ультразвуковое лечение?

Содержимое работы - 1 файл

реферат. good hunting!.docx

— 66.63 Кб (Скачать файл)

изменении знаков приложенного напряжения кварцевая пластинка  будет то

сжиматься, то разжиматься, то есть она будет колебаться в  такт с изменениями

знаков приложенного напряжения. Изменение толщины пластинки  пропорционально

приложенному напряжению.

Принцип пьезоэлектрического  эффекта используется при изготовлении излучателей

УЗ-вых колебаний, которые преобразуют электрические колебания в механические.

В качестве пьезоэлектрических материалов применяют кварц, титанат бария,

фосфат аммония.

Кпд пьезоэлектрических преобразователей достигает 90%, интенсивность излучения  –

несколько десятков Вт/см2. Для увеличения интенсивности и амплитуды

колебаний  используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых

частот концентратор представляет собой фокусирующую систему, чаще всего  в виде

пьезоэлектрического преобразователя  вогнутой формы, излучающего сходящуюся

волну. В фокусе подобных концентраторов достигается интенсивность 105

-106 Вт/см2.

 

                         

   Приемники  ультразвука.   

                        

В качестве приемников ультразвука  на низких и средних частотах чаще всего

применяют электроакустические  преобразователи пьезоэлектрического  типа. Такие

приемники позволяют воспроизводить форму акустического сигнала, то есть

временную зависимость звукового  давления. В зависимости от условий  применения

приемники делают либо резонансными, либо широкополосными. Для получения

усредненных по времени характеристик  звукового поля используют термическими

приемниками звука в виде покрытых звукопоглощающим веществом  термопар или

термисторов. Интенсивность  и звуковое давление можно оценивать и оптическими методами, например по дифракции света на

УЗ.

 

Ультразвук в  медицине.

 

Около полвека назад ультразвук стали использовать в ветеринарии  для определения толщины подкожного жира у свиней. Этот прозаический метод  подтолкнул исследователей к разработке новых излучателей и приемников ультразвука и дал возможность  «рассмотреть» внутренние органы человека. Это гораздо более простая  процедура, чем хирургическая операция, кроме того, она дает возможность  увидеть органы человека в работе. Оказалось возможным даже изучать  движение крови в сосудах, определять состояние костной ткани; и даже внутренних перегородок сердца –  так, выпадение митрального клапана  сердца было впервые обнаружено с  помощью ультразвукового исследования.

В настоящее время ультразвуковая диагностика получила широкое распространение. В основном при распознавании патологических изменений органов и тканей используют ультразвук частотой от 500 кГц до 15 МГц. Звуковые волны такой частоты обладают способностью проходить через ткани организма, отражаясь от всех поверхностей, лежащих на границе тканей разного состава и плотности.

По физической сути можно выделить две разновидности ультразвукового  исследования: ультразвуковая локация  и ультразвуковое просвечивание. При  ультразвуковой локации регистрируются импульсы ультразвука, отраженные от границы  сред, имеющих различные акустические свойства. Перемещение датчика позволяет  выявить размеры, форму и расположение исследуемого объекта. Ультразвуковое просвечивание основано на различном  поглощении ультразвука разными  тканями организма. При исследовании внутреннего органа в него направляют ультразвуковую волну определенной интенсивности и регистрируют интенсивность  прошедшего сигнала датчиком, находящимся  по другую сторону органа. По степени  изменения интенсивности воспроизводится  картина внутреннего строения сканируемого органа.

Принятый сигнал обрабатывается электронным  устройством, результат выдается в  виде кривой (эхограмма) или двухмерного  изображения (т.н. сонограмма – ультразвуковая сканограмма).

В первом случае, (Рис. 005) т.е. при одномерном (т.н. А-методе), отраженный сигнал образует на экране осциллографа фигуру в виде пика на прямой линии. Высота пика соответствует  акустической плотности среды, а  расстояние между пиками – глубине  расположения границы раздела между  средами. А-метод широко применяется  для распознавания болезней головного  мозга (эхоэнцефалография), органов зрения (эхоофтальмография), сердца  (эхокардиография).

Двухмерный (т.н. В-метод), - способ получения  двухмерного изображения посредством  сканирования – перемещения ультразвукового  пучка по поверхности тела во время  исследования. Сканирование обеспечивает регистрацию сигналов последовательно  от разных точек объекта; изображение  возникает на экране телевизионного монитора (Рис. 006) и может быть зафиксировано  на фотобумаге или пленке; его можно  подвергать математической обработке, (Рис. 007) измеряя, в частности, величину разных элементов объекта. Яркость  каждой точки на экране находится  в прямой зависимости от интенсивности  эхо-сигнала. Изображение на телевизионном  экране представлено, обычно, 16-ю оттенками  серого цвета или цветной палитрой, (Рис. 008) отражающими акустическую структуру  тканей. На аппаратах с серой шкалой конкременты (т.е. твердые, похожие на гальку массы, чаще всего образующиеся в желчном пузыре или в мочевыводящих  путях) выглядят ярко-белыми, а образования, содержащие жидкость, например, кисты, - черными.

Современная аппаратура позволяет  производить ультразвуковое сканирование с большой частотой кадров в 1 секунду, что обеспечивает прямое наблюдение за движениями органов (исследование в  реальном времени). По таким сканограммам (Рис. 009) можно судить о расположении, форме и величине исследуемого органа, однородности (Рис. 010) или неоднородности его тканей. Это дает возможность выявлять диффузное уплотнение органа (например, при циррозе печени), находить в нем полости с жидкостью, а также опухолевые образования и плотные очаги. Так, если рентген обнаруживает опухоль, когда плотность её отличается от плотности здоровой ткани в 1,5 – 2 раза и она часто бывает уже неоперабельной, то ультразвук «чувствует» её значительно раньше. На эхограммах сердца вырисовываются его стенки, полости, клапаны, на сонограммах живота – структура печени, желчного пузыря, поджелудочной железы, селезенки, (Рис. 011) почек и т.д. По эхограммам можно распознать асцит,  водянку желчного пузыря, желчные камни, панкреатит и опухоль поджелудочной железы, различные заболевания почек, опухоли, гематомы, кисты и абсцессы печени и др. С помощью ультразвукового исследования выявляют поражения щитовидной и слюнных желёз, небольшие количества жидкости в плевральной полости. Широкое распространение получило ультразвуковое сканирование органов малого таза (Рис. 012) для распознавания кист и опухолей яичников, опухолей мочевого пузыря, прямой кишки и предстательной железы, объема остаточной мочи в мочевом пузыре. По эхограмме определяют срок беременности, положение и массу плода, (Рис. 013) аномалии его развития, многоплодие, исключают внематочную беременность, а, (Рис. 014) начиная с 26 недель  – устанавливают пол будущего ребенка. Для получения высококачественных «срезов» аорты и её крупных ветвей, нижней полой и воротной вен, артерий печени, желудка и почек с помощью ультразвуковой диагностики, не требуется, как при ангиографии, вводить в сосуды рентгеноконтрастное вещество и можно многократно повторять исследование, не опасаясь нанести вред больному. Изучая положение, форму, калибр и очертания кровеносных сосудов, можно выявлять их патологические изменения.

В последнее время особенно бурно  развивается Доплер-метод, основанный на использовании как непрерывного, так и импульсного ультразвука. Он позволяет регистрировать изменения  тока крови даже в небольших кровеносных  сосудах, поэтому доплерография применяется и в акушерстве – с её помощью оценивают поток крови через пуповину, работу сердца и сосудов ребенка. Этот подход оказался ценным и для онкологии – ведь развивающаяся опухоль «обрастает» кровеносными сосудами, внутри неё происходят небольшие кровоизлияния, образуются участки омертвевшей ткани. Всё это вызывает изменения кровотока в сосудах и легко может быть обнаружено с помощью Доплер-метода.

Благодаря ультразвуковой технике  стало возможным увидеть и  то, что происходит внутри костной  ткани. Скорость распространения ультразвука  в костях дает информацию об их строении, содержании органических и минеральных  веществ. Любые патологические изменения, старение, развитие опухолей немедленно отражаются на акустических свойствах  кости. Например, при появлении опухолей внутри кости, скорость ультразвука  увеличивается на 9 – 10%. Эффективность  лечения таких опухолей с помощью  гормонов, химиотерапии или облучения  можно параллельно контролировать ультразвуковыми методами. Деминерализация  костей или патологические изменения  скелета могут быть выявлены на ранней стадии, когда ещё не поздно начинать лечение и диету, замедляющую  развитие болезни.

Ультразвуковые методы исследования оказались полезны и для анализа  человеческой крови. Дело в том, что  мембраны красных кровяных клеток –  эритроцитов – становятся более  «хрупкими» при различных заболеваниях, инфекциях, приеме алкоголя. Этот факт давно используется в медицине. Раньше кровь смешивали в пробирке с  антикоагулянтом, интенсивно встряхивая. Из разрушающихся клеток освобождался гемоглобин, который окрашивал плазму крови, обычно бесцветную, в красный  цвет. По интенсивности этой окраски  и можно судить о скорости и  степени разрушения эритроцитов.

Оказалось, что гораздо проще  разрушать эритроциты ультразвуком низкой интенсивности. В результате получаются так называемые эритрограммы. Этот метод дает более точную информацию о прочности мембран. В сочетании с компьютерным анализом он позволяет не только улучшить диагностику заболеваний крови, например, лейкоза, но и судить о других патологиях, не имеющих четкой клинической картины. Например, на начальных стадиях цирроз печени обычно не дает о себе знать, но токсические продукты, появляющиеся в крови из-за неправильной работы печени, разрушают мембраны эритроцитов, и эритрограмма резко изменяется. У онкологических пациентов прочность мембраны эритроцитов, наоборот, сильно увеличивается.

В последнее время в диагностике  широко применяется и такой метод: каплю крови помещают в кювету, дном которой служит ультразвуковой излучатель. При включении ультразвука  с частотой 500 кГц и определенной интенсивностью капля начинает светиться  – возникает сонолюминесценция. Свечение это постепенно гаснет, и по скорости его затухания можно судить о состоянии организма, онкологических заболеваниях. Сонолюминесценция сильно повышается при беременности, поскольку меняется белковый состав крови.

Разработаны ультразвуковые датчики, которые предназначены для введения в организм. Например, с помощью  такого датчика, введенного через прямую кишку, удается выявлять опухоли  кишечника и устанавливать их размеры. Созданы специальные датчики  для ультразвукового исследования непосредственно на операционном столе  во время оперативного вмешательства, позволяющие определить число и  местонахождение камней в почках и в желчных протоках. В клиническую  практику внедряется методика пункций  внутренних органов и патологических образований (опухолей, абсцессов и  др.) под контролем ультразвукового  сканирования.

Для ультразвукового исследования чаще всего не требуется специальной  подготовки больных. Однако при необходимости  очень тщательного изучения органов  брюшной полости, особенно поджелудочной  железы, прибегают к предварительному очищению кишечника с помощью  клизм. Больной должен явиться в  кабинет натощак. Исследования органов  таза рекомендуется проводить при  наполненном мочевом пузыре. Больного могут исследовать в разном положении  тела: лёжа на спине, животе, на боку, а  также – стоя и сидя. Кожу над  исследуемой областью смазывают  хорошо проводящим ультразвук вазелиновым  маслом или специальным гелем. Используют различные положения ручного  зонда (преобразователя). Меняя положение  преобразователя, врач стремится получить возможно более полную информацию о  состоянии органов.

Современная ультразвуковая аппаратура позволила расширить границы  знаний о микромире. С её помощью  можно получить контрастные и  объемные изображения клеток и тонких срезов тканей. Существует специальный  акустический микроскоп, в котором  используются  ультразвуковые волны  высокой частоты. Таким микроскопом  улавливаются самые тончайшие изменения  «архитектуры» клеток и дают информацию о событиях внутри организма.

Лечение ультразвуком

Много лет назад исследователи  заметили, что пораненное ухо кролика  быстрее заживает, если три раза по 5 минут обработать его ультразвуком с частотой, слегка превышающей порог  чувствительности (т.е. > 20 кГц). В тканях при этом увеличивается обмен  веществ, усиливается синтез белков и нуклеиновых кислот, повышается проницаемость клеточных мембран. Все эти изменения усиливают  регенерацию.

В настоящее время лечение ультразвуковыми  колебаниями получили очень большое  распространение. Используется, в основном, ультразвук частотой от 22 – 44 кГц и  от 800 кГц до 3 МГц. Глубина проникновения  ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово- и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Ультразвуковые процедуры дозируются по интенсивности используемого  ультразвука и по продолжительности  процедуры. Обычно применяют малые  интенсивности ультразвука (0,05 – 0,4 Вт/см2), реже средние (0,5 – 0,8 Вт/см2). Ультразвуковую терапию можно проводить в непрерывном и импульсном режимах ультразвуковых колебаний. Чаще применяют непрерывный режим воздействия. При импульсном режиме уменьшаются тепловой эффект и общая интенсивность ультразвука. Импульсный режим рекомендуется при лечении острых заболеваний, а также для ультразвуковой терапии у детей и пожилых людей с сопутствующими заболеваниями сердечно-сосудистой системы. Ультразвук воздействует лишь на ограниченную часть тела площадью от 100 до 250 см2 (т.н. поле воздействия); это рефлексогенные зоны или область поражения (места проекции боли, сустав, глаз, мышца, рубец, область проекции внутренних органов, гайморовых (т.е. верхнечелюстных) полостей носа, по ходу нерва или сосуда, слизистая оболочка толстой кишки или влагалища).

Информация о работе Ультразвук. Применение ультразвука в медицине