Автор работы: Пользователь скрыл имя, 28 Февраля 2012 в 12:51, реферат
Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую.
Введение…………………………………………………………………………3-6
1. Традиционная энергетика……………………………………………………..7
1.1 Общая характеристика современного энергетического производства…...7
1.2 Традиционная энергетика и ее характеристика………………………….7-9
1.3 Основные типы электростанций и их характеристики…………………9-11
2. Нетрадиционная энергетика………………………………………………..12
2.1 Нетрадиционная энергетика и ее характеристика…………………12-13
2.1 Ветроэнергетика……………………………………………………………14
2.2 Гелиоэнергетика…………………………………………………………14-16
2.3 Биоэнергетика……………………………………………………………17-18
2.4 Другие виды нетрадиционной энергетики…………………………….18-19
3. Энергетика и окружающая среда………………………………………20-21
3.1 Экологические проблемы тепловой энергетики………………………..21
3.2 Экологические проблемы гидроэнергетики…………………………21-22
3.3 Экологические проблемы ядерной энергетики……………………….22-23
Заключение………………………………………………………………..24
Литература……………………………………………………………………..25
Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.
Наиболее удобный вид энергии – электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.
Преимущества электрической энергии перед другими видами энергии, а именно:
♦ электрическую энергию легко преобразовать в другие виды энергии (механическую, тепловую, световую, химическую и др.), и наоборот, в электрическую энергию легко преобразуются любые другие виды энергии;
♦ электрическую энергию можно передавать практически на любые расстояния. Это дает возможность строить электростанции в местах, где имеются природные энергетические ресурсы, и передавать электрическую энергию в места, где расположены источники промышленного сырья, но нет местной энергетической базы:
♦ электрическую энергию удобно дробить на любые части в электрических цепях (мощность приемников электроэнергии может быть от долей ватта до тысяч киловатт);
♦ процессы получения, передачи и потребления электроэнергии легко поддаются автоматизации;
♦ процессы, в которых используется электрическая энергия, допускают простое управление (нажатие кнопки, выключателя и т. д.).
Особо следует отметить существенное удобство применения электрической энергии при автоматизации производственных процессов, благодаря точности и чувствительности электрических методов контроля и управления. Использование электрической энергии позволило повысить производительность труда во всех областях деятельности человека, автоматизировать почти все технологические процессы в промышленности, на транспорте, в сельском хозяйстве и в быту, а также создать комфорт в производственных и жилых помещениях. Кроме того, электрическую энергию широко используют в технологических установках для нагрева изделий, плавления металлов, сварки, электролиза, получения плазмы, получения новых материалов с помощью электрохимии, очистки материалов и газов и т. д.
В настоящее время электрическая энергия является практически единственным видом энергии для искусственного освещения. Можно сказать, что без электрической энергии невозможна нормальная жизнь современного общества.
Единственным недостатком электрической энергии является невозможность запасать ее в больших количествах и сохранять эти запасы в течение длительного времени. Запасы электрической энергии в аккумуляторах, гальванических элементах и конденсаторах достаточны лишь для работы сравнительно маломощных устройств, причем сроки ее сохранения ограничены. Поэтому электрическая энергия должна быть произведена тогда, когда ее требует потребитель, и в том количестве, в котором она ему необходима.
Производство энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделить пять стадий:
1. Получение и концентрация энергетических ресурсов: добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;
2. Передача энергетических ресурсов к установкам, преобразующим энергию; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;
3. Преобразование первичной энергии во вторичную, имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);
4. Передача и распределение преобразованной энергии;
5. Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.
Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.
Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35–40%, остальная часть теряется, причем большая часть – в виде теплоты.
Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем названии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:
ТЭС – тепловая электрическая станция преобразует тепловую энергию в электрическую;
ГЭС – гидроэлектростанция преобразует механическую энергию движения воды в электрическую;
ГАЭС – гидроаккумулирующая электростанция преобразует механическую энергию движения предварительно накопленной в искусственном водоеме воды в электрическую;
АЭС – атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;
ПЭС – приливная электростанция преобразует энергию океанических приливов и отливов в электрическую;
ВЭС – ветряная электростанция преобразует энергию ветра в электрическую;
СЭС – солнечная электростанция преобразует энергию солнечного света в электрическую, и т.д.
В Беларуси более 95% энергии вырабатывается на ТЭС. Поэтому рассмотрим процесс преобразования энергии на ТЭС. По назначению ТЭС делятся на два типа:
КЭС - конденсационные тепловые электростанции, вырабатывающие только электрическую энергию;
ТЭЦ - теплоэлектроцентрали, на которых осуществляется совместное производство электрической и тепловой энергии.
ТЭС могут работать как на органическом (газ, мазут, уголь), так и на ядерном топливе.
Основное оборудование ТЭС состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется тепловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превращается в механическую энергию вращения – турбина со скоростью 3000 оборотов в минуту (50 Герц) вращает электрогенератор Г, который превращает энергию вращения в электрическую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины или котла. На рисунке, кроме основного оборудования ТЭС, показаны конденсатор пара К, где отработанный пар охлаждается внешней водой и конденсируется (при этом от пара отводится некоторое количество теплоты и выбрасывается в окружающую среду) и циркуляционный насос Н, который подает конденсат снова в котел. Таким образом, цикл замыкается. Схема ТЭЦ отличается тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.
Рассмотренная схема ТЭС является основной, в ней используется парогенератор, в котором водяной пар служит носителем энергии. Имеются тепловые станции с газотурбинными установками. Носитель энергии в таких установках в таких установках – газ с воздухом. Газ выделяется при сгорании органического топлива и смешивается с нагретым воздухом. Газовоздушная смесь при температуре 750–770о С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, чем паротурбинная: легко пускается, останавливается и регулируется; пока мощности таких турбин в 5–8 раз меньше, чем паровых, и они должны работать на высокосортном топливе.
Сочетание паротурбинной и газотурбинной установок образует парогазовые установки, в них используются два энергоносителя – пар и газ.
Процесс производства электроэнергии на ТЭС можно разделить на три цикла: химический – процесс горения, в результате которого теплота передается пару; механический – тепловая энергия пара превращается в энергию вращения; электрический – механическая энергия вращения превращается в электрическую.
Общий коэффициент полезного действия ТЭС состоит из произведения коэффициентов полезного действия всех перечисленных циклов:
ηтэс = ηх • ηм • ηэ
КПД ТЭС теоретически равен:
ηтэс = 0,9 • 0,63 • 0,9 = 0,5.
Практически с учетом потерь КПД ТЭС находится в пределах 36–39%. Это означает, что 64–61% топлива используется «впустую», загрязняя окружающую среду в виде тепловых выбросов в атмосферу. КПД ТЭЦ примерно в 2 раза выше, чем КПД ТЭС. Поэтому использование ТЭЦ является существенным фактором энергосбережения.
Атомная электростанция отличается от ТЭС тем, что котел заменен ядерным реактором. Теплота ядерной реакции используется для получения пара.
Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колоссальной кинетической энергии, которая, в свою очередь, превращается в тепловую. Установка, где идут эти превращения, называется реактором.
Через активную зону реактора проходит вещество теплоноситель, которое служит для отвода тепла (вода, инертные газы и т.д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Регулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изменяют поток нейтронов, а значит, и интенсивность ядерной реакции.
Природное ядерное горючее атомной электрической станции – уран. Для биологической защиты от радиации используется слой бетона в несколько метров толщиной.
При сжигании 1 кг каменного угля можно получить 8 кВт•ч электроэнергии, а при расходе 1 кг ядерного топлива вырабатывается 23 млн. кВт•ч электроэнергии.
Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергетических установках (ГЭУ) трех видов:
1) гидравлические электростанции (ГЭС), использующие энергию рек;
2) приливные электростанции (ПЭС), использующие энергию приливов и отливов морей и океанов;
3) гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.
Гидроэнергетические ресурсы в турбине ГЭУ преобразуются в механическую энергию, которая в генераторе превращается в электрическую.
Таким образом, основными источниками энергии являются твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.
2. НЕТРАДИЦИООНАЯ ЭНЕРГЕТИКА
Главным фактором роста энергопроизводства является рост численности населения и прогресс качества жизни общества, который тесно связан с потреблением энергии на душу населения. Сейчас на каждого жителя Земли приходится 2 кВт, а признанная норма качества – 10 кВт (в развитых странах). Если все население Земли рано или поздно должно иметь душевое потребление
10 кВт, то с учетом теплового барьера численность населения не должна превышать 10 млрд. чел. Таким образом, развитие энергетики на невозобновляемых ресурсах ставит жесткий предел численности населения планеты. Однако уже через 75 лет население Земли может достигнуть 20 млрд. чел. Отсюда видно: уже сейчас надо думать о сокращении темпов прироста населения примерно вдвое, к чему цивилизация совсем не готова. Очевиден надвигающийся энергодемографический кризис. Это еще один веский аргумент в пользу развития нетрадиционной энергетики.
Многие специалисты энергетики считают, что единственный способ преодоления кризиса – это масштабное использование возобновляемых источников энергии: солнечной, ветровой, океанической, или как их еще называют нетрадиционных. Правда, ветряные и водяные мельницы известны с незапамятных времен, и в этом смысле они – самые, что ни есть традиционные.
В наши дни поворот к использованию энергии ветра, солнца, воды происходит на новом более высоком уровне развития науки и техники.
спользование традиционных энергоресурсов, кроме поглощения кислорода, приводит к значительному загрязнению окружающей среды. Ограниченность энергоресурсов, влияние их использования на состав атмосферного воздуха и другие негативные воздействия на окружающую среду (образование отходов, нарушение пластов земной коры, изменение климата) вызывают повышенный интерес во всем мире к нетрадиционным источникам энергии, к которым относятся: солнечная энергия; энергия ветра; геотермальная энергия; энергия океанов и морей в виде аккумулированной теплоты, морских течений, морских волн, приливов и отливов, использование водорослей, сельскохозяйственных и городских отходов, биомассы.
Экономическое сравнение электростанций разного типа (на 1991 год) представлено в табл. 2.1.
Таблица 2.1 Экономическое сравнение электростанций разного типа
Тип электростанции | Затраты на строительство, | Стоимость произведенной |
ТЭС на угле | 1000 – 1400 | 5,2 – 6,3 |
АЭС | 2000 – 3500 | 3,6 – 4,5 |
ГЭС | 1000 – 2500 | 2,1 – 6 |
ВЭС | 300 – 1000 | 4,7 – 7,2 |
Приливные (ПЭС) | 1000 – 3500 | 5 – 9 |
Волновые | От 13000 | от 15 |
Солнечные (СЭС) | От 14000 | от 20 |
Экономически целесообразным считается строительство электростанций с удельными капитальными затратами до 2000 USD/кВт.
К 2010 году страны Европейского союза (ЕС) планируют увеличить использование нетрадиционных источников энергии до 8% в общем объеме энергопотребления.
Информация о работе Традиционная и нетрадиционная энергетика. Энергетика и окружающая среда