Связь физики с другими науками

Автор работы: Пользователь скрыл имя, 04 Января 2011 в 11:12, доклад

Краткое описание

Во всем мире наблюдаются глубокие качественные перемены в основных отраслях техники. Революция в энергетике связана с переходом от тепловых электростанций, работающих на органическом топливе, к атомным электростанциям. Создание индустрии искусственных материалов с необычными, но очень важными для практики свойствами произвело революцию в материаловедении. Комплексная механизация и автоматизация ведут нас к революции в промышленности и сельском хозяйстве. Транспорт, строительство, связь становятся принципиально новыми, значительно более производительными и совершенными отраслями современной техники.

Содержание работы

Введение……….……………………………………………………….3

Физика и астрономия…………………………………………………………….4

Физика и техника…………………………………………………………………6

Физика и информатика…………………………………………………………...8

Физика и другие естественные науки……………………………………………9

Человек и физические поля окружающего мира………………………………10

Собственные физические поля организма человека…………………………..16

Заключение……………………………………………………………………….27

Содержимое работы - 1 файл

Реферат Связь физики с другими науками.doc

— 116.00 Кб (Скачать файл)

К сожалению, тепловые карты мозга человека можно  получить только в ходе

нейрохирургических  операций на открытом мозге, поскольку  из-за сильного

поглощения ИК-излучения скальп и толстая черепная коробка оказываются

непреодолимой преградой для сигналов из мозга. Инфракрасное тепловидение тела человека дает информацию о температуре верхних  слоев кожи - рогового эпидермиса и  некоторых подлежащих слоев общей  толщиной около 100 мкм, поскольку, как показано специальными измерениями, электромагнитные волны ИК-диапазона затухают, пройдя в биологических тканях это расстояние. Температура кожного покрова определяется балансом тепла за счет его отдачи в окружающую среду и притока за счет крови, притекающей из "теплового ядра" организма. Поэтому фактически ИК-тепловидение это способ оценить кожный кровоток в различных участках тела. Наиболее распространенным  применением тепловидения в медицине является визуализация кровоснабжения нижних конечностей. Если кровоснабжение в них нарушено, то температура дистальных участков (стопы, голени)  резко снижена. Регистрируя размер областей со сниженной температурой, можно определить степень выраженности заболевания, а также эффективность лечебных мероприятий.

Динамическое  тепловидение позволяет отследить  изменения температуры тела при  различных дозированных воздействиях - функциональных пробах., таких как  тепловое или холодовое воздействие  на определенные участки кожи, физические упражнения, введение препаратов, вызывающих сужение или расширение сосудов и т.д. 
 
 
 
 
 
 
 
 
 
 
 
 

Оптическое  излучение тела человека

       Оптическое излучение тела человека  регистрируется с помощью современной  техники счета фотонов. В этих  устройствах используются высокочувствительные фотоэлектронные умножители, способные регистрировать одиночные кванты света. Измерения, проведенные  в ряде лабораторий, показали, что 1 см2 кожи человека за 1 с спонтанно излучает во все стороны от 6 до 60 квантов, главным образом в сине-зеленой области спектра. Светимости различных участков кожи отличаются - наиболее сильное излучение исходит от кончиков пальцев, гораздо слабее, например, от живота или предплечья. Это свечение не связано с наличием загрязнений на коже и зависит от функционального состояния человека: в покое снижается и повышается с ростом его активности. Можно индуцировать свечение кожи, например, с помощью обработки ее перекисью водорода или воздействия на кожу предварительной засветкой. Сильное последействие - фосфоресценцию - вызывает излучение на длине волны 254 нм, соответствующее пику поглощения ДНК. Предварительная засветка вызывает рост свечения в тысячи раз, которое потом спадает во времени по

сложной кинетической кривой. Оптическое излучение  кожи не является тепловым. Интенсивность теплового излучения в оптическом диапазоне ничтожна - с 1 см2 поверхности тела один квант в среднем может излучаться  лишь 1 раз за десятки секунд. Наиболее вероятный механизм спонтанного свечения - это хемилюминесценция, вызванная перекисным окислением липидов, которое сопровождается появлением радикалов, т.е. молекул в возбужденном  электронном состоянии. При взаимодействии таких молекул в определенном (малом) проценте случаев происходит излучение света. При индуцированном свечении возможны и другие механизмы, например, излучение при активации определенных типов клеток крови - нейтрофилов. 

Акустические  поля человека

       Поверхность человеческого тела  непрерывно колеблется. Эти колебания

несут информацию о многих процессах внутри организма: дыхательных

движениях, биениях сердца и температуре  внутренних органов.  Низкочастотные механические колебания с частотой ниже нескольких килогерц дают информацию о работе легких, сердца, нервной  системы. Регистрировать движения поверхности тела человека можно дистанционными или контактными датчиками в зависимости от решаемой задачи. Например, в фонокардиографии для измерения акустических шумов, создаваемых клапанами сердца, используют микрофоны, устанавливаемые на поверхности грудной клетки.  Кохлеарная акустическая эмиссия. Из уха животных и человека могут излучаться звуки - это явление называют кохлеарной акустической эмиссией, поскольку их источник локализован в улитке (латинское название "cochlea") органа слуха. Эти звуки можно зарегистрировать микрофоном, расположенным в слуховом проходе. Обнаружено несколько разновидностей этого явления, таких как спонтанная эмиссия и акустическое эхо. Спонтанная эмиссия - это самопроизвольное непрерывное излучение звука из ушей человека. Уровень звукового давления достигает 20 дБ, т.е. в 10 раз выше порогового значения 2*10-5 Па, которое способно воспринимать ухо человека на частоте 1 кГц. Частоты эмиссии у разных лиц отличаются и лежат в диапазоне 0,5-5 кГц, излучение отличается высокой монохроматичностью. Эмиссия наблюдается в среднем у 25% мужчин и 50% женщин. Спонтанная эмиссия не имеет никакого отношения к "звону в ушах" - субъективному ощущению чисто нервного происхождения.

Кохлеарная  акустическая эмиссия  связана с  деятельностью так называемых

наружных волосковых клеток. Расположенных в улитке. В ответ на приходящую звуковую волну они изменяют свои размеры и вызывают во внутреннем ухе механические колебания, которые способны, распространяясь в обратном направлении, выходить наружу через среднее ухо. Биофизический механизм быстрых изменений геометрии клеток пока неясен, его быстродействие в 100 раз выше, чем у мышц.

Из всех видов кохлеарной акустической эмиссии  применение в медицине пока что нашло  только явление акустического эха - излучение звуков из уха спустя некоторое время после подачи в ухо короткого звукового сигнала. Оно используется для диагностики слуха новорожденных в  первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии. Отсутствие эха является тревожным симптомом не только глухоты, но и зачастую сопряженных с ней поражений  различных отделов центральной нервной системы. Ранняя диагностика позволяет уже с первых дней жизни принять активные меры и в значительной степени ослабить неблагоприятные последствия этого недуга. Акустические излучения ультразвукового диапазона. Тело человека является источником теплового акустического излучения с различными частотами. Обычно акустические волны подходят из глубины тела, отражаются от его поверхности и уходят обратно, однако пьезодатчик, контактирующий с телом, может их зарегистрировать. Особенность акустических волн, распространяющихся в теле человека, состоит в том, что. Чем выше частота, тем сильнее они затухают. Поэтому из глубины человеческого тела с расстояний 1-10см могут дойти только тепловые ультразвуковые волны мегагерцевого диапазона с частотами не выше 0,5-10 МГц. Интенсивность этих волн пропорциональна температуре тела. Для  измерения интенсивности теплового акустического излучения используют прибор - акустотермометр. С его помощью можно, например, измерить температуру тела человека, погруженного в воду. Существенной областью применения  метода акустотермометрии  в медицине является онкология, так как измерение  температуры глубоких областей тела человека необходимо для точной диагностики расположения опухоли, а также для ее разрушения.

Заключение

       Такая тесная связь физики  с другими науками объясняется  важностью физики, её значением,  так как физика знакомит нас  с наиболее общими законами  природы, управляющими течением процессов в окружающем нас мире и во Вселенной в целом.

       Цель физики заключается в  отыскании общих законов природы  и в объяснении конкретных  процессов на их основе. По мере продвижения к этой цели перед учеными постепенно вырисовывалась величественная и сложная картина единства природы. Мир представляет собой не совокупность разрозненных, независимых друг от друга событий, а разнообразные и многочисленные проявления одного целого.

    Механическая  картина  мира и физика. Многие поколения ученых поражала и продолжает поражать величественная и цельная картина мира, которая была создана на основе механики Ньютона. Согласно Ньютону, весь мир состоит «из твердых, весомых, непроницаемых, подвижных частиц». Эти «первичные частицы абсолютно тверды: они неизмеримо более тверды, чем тела, которые из них состоят, настолько тверды, что они никогда не изнашиваются и не разбиваются вдребезги». Отличаются они друг от друга главным образом количественно, своими массами. Все богатство, все качественное многообразие мира — это результат различий в движении частиц. Внутренняя сущность частиц остается на втором плане.

    Основанием  для такой единой картины мира послужил всеобъемлющий характер открытых Ньютоном законов движения тел. Этим законам с удивительной точностью подчиняются как громадные небесные тела, так и мельчайшие песчинки, гонимые ветром. И даже ветер — движение не видимых глазом частиц воздуха — подчиняется тем же законам. На протяжении долгого времени ученые были уверены, что единственными фундаментальными законами природы являются законы механики Ньютона. Французский ученый Лагранж считал, что «нет человека счастливее Ньютона: ведь только однажды одному человеку суждено построить картину мира».

    Однако  простая механическая картина мира оказалась несостоятельной. При исследовании электромагнитных процессов выяснилось, что они не подчиняются механике Ньютона. Дж. Максвелл открыл новый тип фундаментальных законов, которые не сводятся к механике Ньютона,— это законы поведения электромагнитного поля.

    Электромагнитная  картина мира и  физика. В механике Ньютона предполагалось, что тела непосредственно через пустоту действуют друг на друга и эти взаимодействия осуществляются мгновенно (теория дальнодействия). После создания электродинамики представления о силах существенно изменились. Каждое из взаимодействующих тел создает электромагнитное поле, которое с конечной скоростью распространяется в пространстве. Взаимодействие осуществляется посредством этого поля (теория близкодействия).

    Электромагнитные  силы чрезвычайно широко распространены в природе. Они действуют в атомном ядре, атоме, молекуле, между отдельными молекулами в макроскопических телах. Это происходит потому, что в состав всех атомов входят электрически заряженные частицы. Действие электромагнитных сил обнаруживается и на очень малых расстояниях (ядро), и на космических (электромагнитное излучение звезд).

    Развитие  электродинамики привело к попыткам построить единую электромагнитную картину мира. Все события в мире согласно этой картине управляются законами электромагнитных взаимодействий.

    Кульминации электромагнитная картина мира достигла после создания специальной теории относительности. Было понято фундаментальное значение конечности скорости распространения электромагнитных взаимодействий, создано новое учение о пространстве и времени, найдены релятивистские уравнения движения, заменяющие уравнения Ньютона при больших скоростях.

    Если  во времена расцвета механической картины  мира делались попытки свести электромагнитные явления к механическим процессам в особой среде (мировом эфире), то теперь уже стремились, наоборот, вывести законы движения частиц из электромагнитной теории. Частицы вещества пытались рассматривать как «сгустки» электромагнитного поля. Однако свести все процессы в природе к электромагнитным не удалось. Уравнения движения частиц и закон гравитационного взаимодействия не могут быть выведены из теории электромагнитного поля. Кроме того, были открыты электрически нейтральные частицы и новые типы взаимодействия. Природа оказалась сложнее, чем предполагали вначале: ни единый закон движения, ни единственная сила не способны охватить всего многообразия процессов в мире.

    Единство  строения материи и физика. Мир  чрезвычайно разнообразен. Но как это ни удивительно, вещество звезд точно такое же, как и вещество, из которого состоит Земля. Атомы, слагающие все тела Вселенной, совершенно одинаковы. Живые организмы состоят из тех же атомов, что и неживые.

    Все атомы имеют одинаковую структуру  и построены из элементарных частиц трех сортов. У них есть ядра из протонов и нейтронов, окруженные электронами. Ядра и электроны взаимодействуют друг с другом посредством электромагнитного поля, квантами которого являются фотоны.

    Взаимодействие  же между протонами и нейтронами в ядре осуществляют в основном π-мезоны, которые представляют собой кванты ядерного поля. При распаде нейтронов появляются нейтрино. Кроме того, открыто много других элементарных частиц. Но только при взаимодействии частиц очень больших энергий они начинают играть заметную роль.

    В первой половине XX века был открыт фундаментальный  факт: все элементарные  частицы  способны превращаться друг в друга.

    В 70-е гг. было установлено, что все  сильно взаимодействующие частицы состоят из субэлементарных частиц — кварков шести видов. Истинно элементарными частицами являются лептоны и кварки.

    После открытия элементарных частиц и их превращений на первый план единой картины мира выступило единство в строении материи. В основе этого единства лежит материальность всех элементарных частиц. Различные элементарные частицы — это различные конкретные формы существования материи.

    Современная физическая картина  мира и роль физики. Единство мира не исчерпывается единством строения материи. Оно проявляется и в законах движения частиц, и в законах их взаимодействия.

    Несмотря  на удивительное разнообразие взаимодействий тел друг с другом, в природе по современным данным имеются лишь четыре типа сил. Это гравитационные силы, электромагнитные, ядерные и слабые взаимодействия. Последние проявляются главным образом при превращениях элементарных частиц друг в друга. С проявлением всех четырех типов сил мы встречаемся в безграничных просторах Вселенной, в любых телах на Земле (в том числе и в живых организмах), в атомах и атомных ядрах, при всех превращениях элементарных частиц.

    Революционное изменение классических представлений о физической картине мира произошло после открытия квантовых свойств материи. С появлением квантовой физики, описывающей движение микрочастиц, начали вырисовываться новые элементы единой физической картины мира.

Информация о работе Связь физики с другими науками