Автор работы: Пользователь скрыл имя, 05 Марта 2011 в 18:02, реферат
Исследователя, работающего в области физики твердого тела, интересуют такие материалы, как металлы и сплавы, полупроводники, диэлектрики и магнитные материалы. Многие из них относятся к кристаллическим веществам: их атомы расположены так, что образуют правильную трехмерную решетку – периодическую структуру. Нарушения идеальной периодичности могут быть обусловлены химическими примесями, незаполненными (вакантными) атомными узлами, атомами внедрения (в промежутках между узлами), а также дислокациями.
Введение........................................................................................................................2
1. Твердые тела и их превращение в жидкости: типы кристаллических твердых тел.....................................................................................................................................4
2. Упругие свойства твердых тел, плавление, кристаллизация................................15
Заключение................................................................................................................20
Список литературы...............................................................................................22
Введение......................
1. Твердые
тела и их превращение в жидкости: типы
кристаллических твердых тел...........................
2. Упругие
свойства твердых тел, плавление, кристаллизация................
Заключение....................
Список
литературы....................
Физика твердого тела – один из тех столпов, на которых покоится современное технологическое общество. В сущности, вся армия инженеров работает над наилучшим использованием твердых материалов при проектировании и изготовлении самых разнообразных инструментов, станков, механических и электронных компонентов, необходимых в таких областях, как связь, транспорт, компьютерная техника, а также фундаментальные исследования.
Исследователя, работающего в области физики твердого тела, интересуют такие материалы, как металлы и сплавы, полупроводники, диэлектрики и магнитные материалы. Многие из них относятся к кристаллическим веществам: их атомы расположены так, что образуют правильную трехмерную решетку – периодическую структуру. Нарушения идеальной периодичности могут быть обусловлены химическими примесями, незаполненными (вакантными) атомными узлами, атомами внедрения (в промежутках между узлами), а также дислокациями. Во многих случаях подобными нарушениями или отклонениями от строгой периодичности существенным образом определяются физические свойства кристаллических твердых тел. Управляя концентрацией подобных дефектов или целенаправленно создавая их, можно получать «наперед заданные» свойства твердых тел. Такая технология играет первостепенную роль, например, в области полупроводниковой микроэлектроники. Другой класс материалов, представляющий интерес для физики твердого тела, – это стеклообразные, или аморфные, материалы. Атомы в таких материалах располагаются в общем так же, как и в жидкостях, т.е. они упорядочены лишь в пределах нескольких межатомных расстояний от каждого атома, принятого за центральный. Иначе говоря, для стекол характерен ближний порядок в расположении атомов, а не дальний, как в кристаллической структуре.
Долгое время казалось, что самое интересное в физике - это исследования микромира и микрокосмоса. Именно там пытались найти ответы на наиболее важные, фундаментальные вопросы, объясняющие устройство окружающего мира. А сейчас образовался третий фронт исследований - изучение твёрдых тел.
Почему же так важно исследовать твёрдые тела?
Огромную роль, конечно, играет здесь практическая деятельность человека. Твёрдые тела - это металлы и диэлектрики, без которых немыслима электротехника, это - полупроводники, лежащие в основе современной электроники, магниты, сверхпроводники, конструкционные материалы. Словом, можно утверждать, что научно-технический прогресс в значительной мере основан на использовании твёрдых тел.
Но не только практическая сторона дела важна при их изучении. Сама внутренняя логика развития науки - физики твёрдого тела - привела к пониманию важности коллективных свойств больших систем.
Твёрдое тело состоит из миллиарда частиц, которые взаимодействуют между собой. Это обусловливает появление определённого порядка в системе и особых свойств всего количества микрочастиц. Так, коллективные свойства электронов определяют электропроводность твёрдых тел, а способность тела поглощать тепло - теплоёмкость - зависит от характера коллективных колебаний атомов при тепловом движении. Коллективные свойства объясняют все основные закономерности поведения твёрдых тел.
Структура твёрдых тел многообразна. Тем
не менее, их можно разделить на два больших
класса: кристаллы и аморфные тела.
1. Твердые тела и их превращение в жидкости: типы кристаллических твердых тел.
Твердое тело – это агрегатное состояние вещества, отличительным признаками которого при нормальных условиях являются устойчивость формы и характер теплового движения структурных единиц твердое тело (атомов, ионов, молекул), совершающих малые колебания относительно некоторых фиксированных положений равновесия.
Свойства твердого тела определяются их химическим составом и зависят от характера межатомных связей, типа кристаллической структуры и степени структурного совершенства, а также от фазового состава. В зависимости от кол-ва образующих их элементов твердое тело можно подразделить на простые (однокомпонентные) и сложные (многокомпонентные), которые, в свою очередь, могут представлять собой химические соединения, либо твердые растворы различного типа (замещения, внедрения).
Межатомные связи в твердое тело осуществляются в результате взаимодействия атомов (ионов) и валентных электронов, связь между атомами может быть ионной, ковалентной, металлической, а также ван-дер-ваальсовой, водородной. Для многих твердых тел характерен смешанный тип химической связи.
Твердые тела бывают
Кристаллические твердые тела могут быть в виде монокристаллов или поликристаллов. В большинстве областей техники используют поликристаллические твердое тело, монокристаллы находят применение в электронике, производстве оптических приборов, ювелирных изделий и т. д. Структурно-чувствительные свойства твердого тела, связанные с перемещением частиц и квазичастиц, а также магнитных и электрических доменов и др. существенно зависят от типа и концентрации дефектов кристаллической решетки. Равновесные собств. точечные дефекты (напр., вакансии, межузельные атомы) термодинамически обусловлены и играют важную роль в процессах диффузии и самодиффузии в твердое тело Это используется в процессах гомогенизации, рекристаллизации, легирования и др. Ряд практически важных свойств твердого тела зависит от других видов структурных дефектов, имеющихся в кристаллах -дислокаций, малоугловых и межзеренных границ, включений и т.д.
Для аморфного состояния твердого тела характерно наличие только ближнего порядка; оно термодинамически неустойчиво, однако при обычных т-рах переход в кристаллическое состояние обычно не реализуется и может осуществляться лишь при нагреве. Аморфные твердые тела, в отличие от большинства кристаллических, изотропны.
По фазовому составу твердые тела разделяются на однофазные и многофазные. Форма и распределение фазовых составляющих могут оказывать сильное влияние на различные свойства многофазных твердых тел. К наиболее важным в практическом отношении свойствам твердых тел относят механические, электрические, тепловые, магнитные, оптические.
Переход тела из жидкой (или газообразной) фазы к твердое состояние не обязательно сопровождается кристаллизацией тела, а может приводить к аморфизации тела, в том числе и к образованию стеклообразного состояния, которое получается из вязкого расплава при быстром его охлаждении, т. е. твердением без кристаллизации.
При первом знакомстве с кристаллами прежде всего бросается в глаза их правильная многогранная форма. Этот образ кристалла в виде правильного многогранника возник у нас от драгоценных камней, природных минералок и искусственных кристаллов. Прозрачный кварц и красный рубин, мягкий тальк и сверхтвердый алмаз, микроскопические крупинки сахарного песка и гигантские сталактиты - вот лишь некоторые представители удивительно многообразного царства кристаллов. Такие кристаллы часто называют монокристаллами, чтобы отличить их от поликристаллов - конгломерата микроскопических кристалликов, которыми является большинство минералов и металлов.
Монокристалл может иметь и кубическую форму, как кристалл поваренной соли, форму ромбической призмы, как кристалл сегнетовой соли, октаэдра или плоского треугольника, как кристалл титаната бария. Его форма может быть и более сложной комбинацией простых геометрических фигур, но это - его естественная форма. Таким его сотворила природа.
Принципиальными особенностями кристаллических тел являются их трансляционная симметрия, то есть тот факт, что в кристаллах их структура (пространственное расположение ее элементов) полностью повторяется через определенное расстояние, называемое периодом решетки.
Принято говорить, что в отличие от дальнего порядка, наблюдаемого в кристаллах (упорядоченное расположение частиц в узлах кристаллической решетки сохраняется по всему объему кристалла), в жидкостях и аморфных телах имеет место ближний порядок в расположении частиц. Это означает, что по отношению к любой частице расположение ближайших соседей является упорядоченным, хотя и не так четко, как в кристалле, но по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным и довольно быстро (на расстоянии 3-4 эффективных диаметров молекулы) порядок в расположении частиц полностью исчезает.
Ошибочным является представление, что переход вещества из жидкого состояния в твердое означает сближение молекул, которое сопровождается увеличением сил сцепления между ними, а это и создает «твердость» вещества. Дело в том, что некоторые вещества (вода, висмут, сурьма) при кристаллизации увеличиваются в объеме, следовательно средние расстояния между соседними молекулами у этих веществ будут в твердой фазе больше, чем в жидкой, хотя, безусловно, в твердой фазе молекулы будут прочнее связаны между собой. Исходя из этого можно утверждать, что решающим фактором в процессе отвердевания кристаллических тел является не уменьшение расстояния между соседними частицами, а ограничение свободы их теплового движения. Само же ограничение обусловлено увеличением сил связи между частицами, которое возникает при упорядоченном расположении их в кристалле.
Итак, причиной геометрически правильной внешней формы кристалла является геометрически правильное внутреннее его строение - пространственная решетка. Пространственная решетка - это, конечно, абстракция. Просто в пространстве, которое занимает кристалл, наблюдается правильное, закономерное чередование атомов или ионов. Если их соединить воображаемыми прямыми, то получим пространственную решетку, в узлах которой располагаются атомы или ионы.
Симметрия «правит» миром кристаллов. Это общее свойство, определяющее законы расположения структурных элементов в пространственной решетке, взаимное расположение граней макроскопического кристалла, диктующее, какими физическими свойствами может обладать кристалл и по каким пространственным направлениям в нем эти свойства проявляются. Свойство симметрии является проявлением общих фундаментальных законов природы. Вообще под симметрией следует понимать способность фигуры закономерно повторять в себе свои части.
Симметрия внешней формы кристалла является проявлением геометрически правильного, симметричного расположения атомов и ионов. Симметрия кристалла кубической формы проявляется в том, что при повороте его вокруг оси, соединяющей центры противоположных граней, он совмещается сам с собой. Теперь вернемся к кубической решетке. Считая ее бесконечной (еще раз отметим, что в макроскопических масштабах мы имеем дело с громадным числом элементов кристалла; если ребро куба равно 1 см, то оно состоит примерно из 3 - 107 ионов!), проведем прямые через любую цепочку чередующихся ионов Na+ и С1- в том месте, где они расположены особенно близко друг к другу. Тогда при повороте решетки вокруг любой из прямых на 90° получаем решетку совершенно идентичную первоначальной.
Существует много таких физических явлений, в которых атомная структура вещества не проявляется непосредственным образом. При изучении этих явлений вещество можно рассматривать как сплошную среду, отвлекаясь от его внутренней структуры. Таковы, например, тепловое расширение тел, их деформация под влиянием внешних сил, диэлектрическая проницаемость, оптические свойства и т. п. Свойства вещества как сплошной среды называют макроскопическими свойствами.
Макроскопические свойства кристалла различны по разным направлениям в нем. Например, особенности прохождения света через кристалл зависят от направления луча; тепловое расширение кристалла происходит, вообще говоря, различно по разным направлениям; деформация кристалла зависит от ориентации внешних сил и т. п. Происхождение этой зависимости свойств от направления связано, конечно, со структурой кристалла. Так, например, растяжение кубического кристалла вдоль направления, параллельного ребрам кубических ячеек его решетки, будет происходить не так, как при растяжении вдоль диагонали этих ячеек, ибо энергия связи между атомами зависит от расстояния между ними.