Проявление симметрии в различных формах материи

Автор работы: Пользователь скрыл имя, 09 Декабря 2011 в 22:22, реферат

Краткое описание

В данном реферате рассмотрены основные типы симметрии: пространственно-временные, внутренние, одно- и двумерные. Проявления этих видов симметрии показаны на примере кристаллов. Также рассмотрена биосимметрия, включающая в себя одно из важных проявлений симметрии – симметрию молекул.

Содержание работы

I.Введение……………………………………………………………………. 3
II.Главная часть……………………………………………………………….3-32
2.1.Типы симметрии…………………………………………………….3-10
2.11.Пространственно-временные и внутренние симметрии…….3-5
2.12.Одно- и двумерная симметрии………………………………..5-7
2.13.Континуумы,семиконтинуумы,дисконтинуумы……………..7-10
2.2.Кристаллы…………………………………………………………..10-19
2.21 История познания кристаллографической симметрии………..10-14
2.22. Симметрия кристаллов………………………………………….14-19
2.3. Биосимметрия……………………………………………………….20-32
2.31. Структурная-молекулярная…………………………………….20-23
2.32. Структурная-морфологическая………………………………..23-27
2.33.Структурная-неоклассическая………………………………….27-29
2.34. Геометрическая и динамическая………………………………29-32

III.Заключение………………………………………………………………...32-33
IV.Список литературы………………………………………………………..34

Содержимое работы - 1 файл

Проявление симметрии в различных формах материи.doc

— 245.00 Кб (Скачать файл)

      Стержни – это фигуры без особых точек  и плоскостей, но с единственным особым направлением, осью стержня, с  которой, кроме оси переносов, могут  совпадать винтовые, зеркально-поворотные, простые поворотные оси любого порядка. Таким образом, бордюры и ленты – стержни особого рода. Примеры стержней – цепи, плетеные канаты, цепные полимерные молекулы, лучи простого и поляризованного света, силовые линии и т.д. На оси стержня можно располагать фигуры с самыми различными, но не выходящими за пределы особого направления элементами симметрии; из всех фигур с особой точкой для этой цели пригодны ,таким образом, все конечные фигуры, кроме правильных многогранников, содержащих косые оси. Размножение фигур по оси стержня производится с помощью элементов симметрии бесконечных                                                  (транслякционные и винтовые оси, плоскость скользящего отражения), а также промежуточных элементов конечных фигур (центра симметрии, поперечной оси второго порядка, зеркально-поворотной оси, поперечной плоскости симметрии). Существует бесконечное множество видов симметрии стержней, сводимых к 17 гтипам, кристаллографических групп симметрии – 75.

      Симметрия двумерная присуща фигурам с двумя особенными направлениями: сетчатым орнаментам и слоям, названия которых по происхождению хотя и связаны с определенного рода бытовыми вещами, тем не менее также служат лишь родовыми понятиями для обозначения двух гораздо более широких явлений.

      Сетчатый  орнамент – это фигура без особенной  точки, с особенной полярной плоскостью и двумя осями переносов. Примерами  его являются плоские орнаменты  кристаллических граней, образованные атомами, ионами и молекулами, клеточек биологических срезов и т.д. Бесконечный сетчатый орнамент применяется человеком при производстве паркетных полов, бумажных обоев, ковров и т .д.

      Фигуры  односторонней разетки симметрии n или n∙m (n - ось симметрии порядка nm - плоскость, точка – знак прохождения n штук плоскостей m   вдоль оси n) при их размножении в двух взаимно перпендикулярных направлениях посредством непрерывных переносов а’ и а’ приводят к односторонним плоским континуумам двоякого рода: а’: а’: n∙m; а’: а’: n (n = 1:∞)(здесь двоеточие-знак перпендикулярности). Таким образом, возможно бесконечное множество отличных от евклидовых односторонних плоскостей. Замечательно, что только при n = ∞ мы получаем вполне изотропную: 1)  Обыкновенную   одностороннюю плоскость симметрии а’: а’: ∞∙m,которой отвечает, например, гладкая поверхность воды, отражающая световые  лучи; 2)  правую и левую односторонние плоскости симметрии а’: а’: ∞, которой отвечает поверхность оптически активного раствора, вращающего плоскость линейно поляризованного света вправо или влево. Для биологических систем наиболее характерны плоскости именно двух последних родов (изомерийные).

      Всем  остальным видам симметрии ( n ≠ ∞) отвечают анизотропные плоскости; формуле а’: а’: 1отвечают правые и левые асимметричные в смысле симметрии размножаемых точек плоскости. Их моделями могут служить   бесконечные  односторонние поверхности с равномерно и беспорядочно распределенными на них асимметричными молекулами или однородные сообщества высших растений, рассмотренные с высоты птичьего полета.

      От односторонних плоских континуумов легко перейти к односторонним семиконтинуума - бесконечным  плоским фигурам, прерывным в одних и непрерывным в других направлениях. Примеры их - система начерченных на бумаге параллельных полос, плоский ряд карандашей и т. д. Их симметрия исчерпывается всего 7 видами. Причем если отбросить в формулах симметрии плоских односторонних семиконтинуумов символ непрерывной оси переносов, то получается 7 формул симметрии уже известных нам бордюров. Это значит, что плоские односторонние семиконтинуумы - это обыкновенные бордюры, до бесконечности вытянутые в ширину.

      Слои  – это фигуры без особенных  точек, с особенной, не обязательно  полярной плоскостью и двумя осями  переносов. Таким образом, сетчатые орнаменты - лишь особого рода слои. Примерами слоев являются складчатые слои полипептидных цепей, тончайшие пленки, прозрачные двусторонние вывески и т. д.

      Вывод видов симметрии двусторонних плоских  континуумов осуществляется размножением фигур двусторонней розетки посредством  двух взаимно перпендикулярных непрерывных переносов. Так как число групп симметрии двусторонних розеток бесконечно, то бесконечно и число групп симметрии двусторонних плоских  континуумов.

      Двусторонний  плоский семиконтинуум можно  получить посредством двух взаимно  перпендикулярных переносов прямой линии, обладающей той или иной симметрией ленты. В качестве примера плоского двустороннего семиконтинуума можно взять систему тонких натянутых на плоскости равноотстоящих друг от друга проволок.

       2.1.3.Континуумы, семиконтинуумы, дисконтинуумы

      Теперь  возвратимся к фигурам с трехмерной симметрией, но уже как к симметрическим пространствам – трехмерным дисконтинуумам, семиконтинуумам и континуумам.

      Уже из философских положений: 1) пространство и время – формы существования  материи,2)движение – сущность пространства и времени,3)существуют качественно различные, взаимно превращающиеся виды материи и формы ее движения – вытекают выводы о существовании качественно различных взаимно превращающихся конкретных форм пространства и времени.

      Данные  о континуумах, семиконтинуумах  и дисконтинуумах также подтверждают эти утверждения. Они с новой  и очень своеобразной стороны  выявляют связь симметрии с пространством  и временем.

      Очевидно  кристаллы в отношении их атомов,ионов  и молекул можно рассматривать как дискретные трехмерные пространства – дисконтинуумы.

      Помимо  дискретных – анизотропных и неоднородных – пространств  в теории различают  еще и дискретные в одних и  непрерывные в других направлениях пространства – семиконтинуумы I и II рода. Семиконтинуумы, будучи явлениями, переходными между континуумами и дисконтинуумами и одновременно их единством, с новых сторон выявляют диалектику пространства.

      Пространственные (трехмерные) семиконтинуумы I рода могут быть получены трансляцией плоских континуумов вдоль перпендикуляра к ним. Число групп симметрии пространственных семиконтинуумов I рода бесконечно.Можно привести несколько примеров таких пространств в природе. Они проявляются, например, в так называемых смектических жидких кристаллах. Последние состоят из пленок толщиной в 1-2 молекулы, пленки лежат друг на друге, как листы в стопке бумаги, причем молекулы в них одной своей осью расположены параллельно друг другу, а двумя другими нет. Другие примеры-поле стоячих ультразвуковых волн в жидкости, образованное сгущениями и разряжениями последней, а также однородное световое поле, которое можно рассматривать как семиконтинуум для плоских волн.

      Пространственные  семиконтинуумы II рода могут быть получены переносом любых из одно- и двусторонних плоскостей, обладающих симметрией бесконечных слоев. Простейшие примеры семиконтинуумов II рода дает практика: с ними мы сталкиваемся при укладке стержней- бревен, труб и т.д.

      Перейдем  теперь к рассмотрению полностью  непрерывных во всех трех направлениях пространств-континуумов. Пространственные континуумы могут быть получены путем трех непрерывных взаимно перпендикулярных переносов элементарных объектов, обладающих симметрией конечных фигур.

      Примером  симметрических пространственных континуумов  являются разнообразные физические поля. Евклидово пространство – также один из примеров  таких континнумов. Его можно получить непрерывным «размножением» в трех направлениях точки, обладающей симметрией обыкновенного шара( ∞/∞∙m). Пространство уже обычного электрического поля, в котором направление «вперед» (по силовым линиям) отлично от направления «назад» (против силовых линий), существенно отличается от пространства Евклида. Такой континуум можно получить непрерывным переносом в трех взаимно перпендикулярных направлениях одной точки с симметрией обыкновенного круглого конуса(∞∙m).

      Как известно, в теории относительности  была впервые выявлена глубокая связь  двух фундаментальных континуумов  – пространственного и временного. Поэтому особое значение среди различных  физических континуумов придается пространственно-временному, описываемому ортохронной группой преобразований Лоренца. Она состоит из: 1) группы вращений в пространственно-временных плоскостях на чисто мнимый угол,2) группы трехмерных вращений, 3) группы пространственной инверсии.

      Основной  вывод, неизбежно следующий из рассмотрения свойств одно-, дву-, трех-,четырех-,…,n-мерных континуумов, семиконтинуумов и дисконтинуумов, - это вывод о бесконечном – количественном и качественном разнообразии и одно- и двусторонних превращениях, переходах одних реальных пространств и времен в другие.

      Эти же выводы подтверждаются и общей  теорией относительности, согласно которой в «большом» – в  масштабах Метагалактики – реальное пространство- время глубоко неоднородно  и неизотропно, хотя в «малом» (например, в масштабах Солнечной ситемы) это пространство-время псевдоевклидово. Однако это подход к малому пространству и времени только с одной точки зрения. Тоже малое даже в бесчисленном множестве «совсем малых» пространств и времен, если его рассматривать уже с позиции геометрической симметрии, вернее кристаллографических аспектов, обнаруживает также бесконечное разнообразие Материалы о плоских и трехмерных реальных континуумах, семиконтинуумах и дисконтинуумах доказывают это совершенно строго.Приведем новые подтверждения развиваемых здесь положений из области квантовой физики твердого тела.

      Известно, что все атомы правилбной кристаллической  решетки в некотором приближении  одинаковы. Они подобны музыкальным  струнам, настроенным на одну и ту же частоту, и вследствие этого при возбуждении колебаний в одном из них способны резонировать, что приводит к волне, бегущей через весь кристалл. Природа этих волн может быть очень разнообразной - звуковой, магнитной, электрической и т.д.  Согласно общим законам квантовой механики, эти волны возникают и передаются только в виде квантов энергии. Последние во многом аналогичны обычным частицам, и их называют квазичастицами. Поскольку природа их определяется структурой и химическим составом кристаллов, то их разнообразие значительно более широко, чем разнообразие истинных частиц.Сейчас известны такие квазичастицы, как фотоны (кванты звука), электроны проводимости, магноны (спиновые волны), эквитоны, поляритоны (светоэкзитоны) и многие дручие. Важность введения квазичастиц в теорию твердого тела состояла в том, что во многих случаях кристалл оказалось возможным трактовать с позиций невзаимодействующих или слабо взаимодействующих квазичастиц.

      Известно, что механику истинных частиц пронизывает  принцип относительности, выраженный лоренцовыми преобразованиями. Этот принцип выражает однородность, изотропность пространства и однородность времени, с которыми связаны разные законы сохранения. Это проявляется также и в универсальности для механики всех истинных частиц зависимости энергии E от импульса p:          __________

                Е=√ E  +c p 

      Где Е т с  -энергия покоя, т – масса поко, с – скорость света в вакууме.

      Если  с/м<<c, то есть вне релятивистской области, то     Е=р /2т.

      Это обычный квадратичный закон дисперсии.

      Однако с переходом к квазичастицам положение радикально меняется! И это прямо связано с резко иным характером малых кристаллических пространств по сравнению с «пустым» пространством малого. Очень четко и интересно резюмируют результаты такого перехода И.М. Лившиц и В.М. Агранович. Они пишут, что для квазичастиц положение радикально меняется, потому что «квазичастицы не в пустом пространстве,, не в вакууме, а в кристаллическом пространстве, которое имеет симметрию, отвечающую соответствующей пространственной группе кристалла. В связи с этим имеется выделенная система отсчета и нет прежнего принципа относительности. Поэтому нет и закона дисперсии, который имеет место для истинных частиц. Вместо этого возникает сложный закон дисперсии Е=Е(р), причем вместо импульса приходится говорить о квазиимпульсе, ибо пространство уже неоднородно и закон сохранения импульса, который является точным законом в однородном пространстве, в кристаллическом пространствевыполняется с точностью до целочисленного вектора обратной решетки, умноженной на h.

      Закон дисперсии для квазичастиц существенно  отличается от элементарного закона Е=р /2т. Во-первых,   Е(р) – периодическая функция р с периодом, равным периоду обратной решетки, умноженному на  h. Во- вторых, имеется, вообще говоря, резкая анизотропия этого закона дисперсии и, следовательно, анизотртпия всех свойств, определяемых квазичастицами»ю

      Далее. Для истинных частиц в зависимости  Е=р /2т каждому Е соответствуют  поверхности, называемые поверхностями  Ферми. В данном случае это просто сферы, радиус которых растет пропорционально √Е. Для квазичастиц уже в пространстве квазиимпульсов функции Е=Е(р) при каждом заданном Е соответствует периодически повторяющийся набор поверхностей Ферми, которые иногда могут смыкаться в одну поверхность, проходящую через все пространство. Придавая Е различные значения и изображая графически в итоге всю функцию Е= Е(р), можно передать рисунком все черты динамики квазичастиц. Получающиеся при таком подходе изображения топологически очень сложны и чрезвычайно напоминают абстрактные скульптуры. Они резко отличаются от примитивных по форме сфер.

Информация о работе Проявление симметрии в различных формах материи