Автор работы: Пользователь скрыл имя, 09 Декабря 2011 в 22:22, реферат
В данном реферате рассмотрены основные типы симметрии: пространственно-временные, внутренние, одно- и двумерные. Проявления этих видов симметрии показаны на примере кристаллов. Также рассмотрена биосимметрия, включающая в себя одно из важных проявлений симметрии – симметрию молекул.
I.Введение……………………………………………………………………. 3
II.Главная часть……………………………………………………………….3-32
2.1.Типы симметрии…………………………………………………….3-10
2.11.Пространственно-временные и внутренние симметрии…….3-5
2.12.Одно- и двумерная симметрии………………………………..5-7
2.13.Континуумы,семиконтинуумы,дисконтинуумы……………..7-10
2.2.Кристаллы…………………………………………………………..10-19
2.21 История познания кристаллографической симметрии………..10-14
2.22. Симметрия кристаллов………………………………………….14-19
2.3. Биосимметрия……………………………………………………….20-32
2.31. Структурная-молекулярная…………………………………….20-23
2.32. Структурная-морфологическая………………………………..23-27
2.33.Структурная-неоклассическая………………………………….27-29
2.34. Геометрическая и динамическая………………………………29-32
III.Заключение………………………………………………………………...32-33
IV.Список литературы………………………………………………………..34
Стержни
– это фигуры без особых точек
и плоскостей, но с единственным
особым направлением, осью стержня, с
которой, кроме оси переносов, могут
совпадать винтовые, зеркально-поворотные,
простые поворотные оси любого порядка.
Таким образом, бордюры и ленты – стержни
особого рода. Примеры стержней – цепи,
плетеные канаты, цепные полимерные молекулы,
лучи простого и поляризованного света,
силовые линии и т.д. На оси стержня можно
располагать фигуры с самыми различными,
но не выходящими за пределы особого направления
элементами симметрии; из всех фигур с
особой точкой для этой цели пригодны
,таким образом, все конечные фигуры, кроме
правильных многогранников, содержащих
косые оси. Размножение фигур по оси стержня
производится с помощью элементов симметрии
бесконечных
Симметрия двумерная присуща фигурам с двумя особенными направлениями: сетчатым орнаментам и слоям, названия которых по происхождению хотя и связаны с определенного рода бытовыми вещами, тем не менее также служат лишь родовыми понятиями для обозначения двух гораздо более широких явлений.
Сетчатый орнамент – это фигура без особенной точки, с особенной полярной плоскостью и двумя осями переносов. Примерами его являются плоские орнаменты кристаллических граней, образованные атомами, ионами и молекулами, клеточек биологических срезов и т.д. Бесконечный сетчатый орнамент применяется человеком при производстве паркетных полов, бумажных обоев, ковров и т .д.
Фигуры
односторонней разетки
Всем остальным видам симметрии ( n ≠ ∞) отвечают анизотропные плоскости; формуле а’: а’: 1отвечают правые и левые асимметричные в смысле симметрии размножаемых точек плоскости. Их моделями могут служить бесконечные односторонние поверхности с равномерно и беспорядочно распределенными на них асимметричными молекулами или однородные сообщества высших растений, рассмотренные с высоты птичьего полета.
От односторонних плоских континуумов легко перейти к односторонним семиконтинуума - бесконечным плоским фигурам, прерывным в одних и непрерывным в других направлениях. Примеры их - система начерченных на бумаге параллельных полос, плоский ряд карандашей и т. д. Их симметрия исчерпывается всего 7 видами. Причем если отбросить в формулах симметрии плоских односторонних семиконтинуумов символ непрерывной оси переносов, то получается 7 формул симметрии уже известных нам бордюров. Это значит, что плоские односторонние семиконтинуумы - это обыкновенные бордюры, до бесконечности вытянутые в ширину.
Слои – это фигуры без особенных точек, с особенной, не обязательно полярной плоскостью и двумя осями переносов. Таким образом, сетчатые орнаменты - лишь особого рода слои. Примерами слоев являются складчатые слои полипептидных цепей, тончайшие пленки, прозрачные двусторонние вывески и т. д.
Вывод видов симметрии двусторонних плоских континуумов осуществляется размножением фигур двусторонней розетки посредством двух взаимно перпендикулярных непрерывных переносов. Так как число групп симметрии двусторонних розеток бесконечно, то бесконечно и число групп симметрии двусторонних плоских континуумов.
Двусторонний плоский семиконтинуум можно получить посредством двух взаимно перпендикулярных переносов прямой линии, обладающей той или иной симметрией ленты. В качестве примера плоского двустороннего семиконтинуума можно взять систему тонких натянутых на плоскости равноотстоящих друг от друга проволок.
2.1.3.Континуумы, семиконтинуумы, дисконтинуумы
Теперь
возвратимся к фигурам с
Уже из философских положений: 1) пространство и время – формы существования материи,2)движение – сущность пространства и времени,3)существуют качественно различные, взаимно превращающиеся виды материи и формы ее движения – вытекают выводы о существовании качественно различных взаимно превращающихся конкретных форм пространства и времени.
Данные
о континуумах, семиконтинуумах
и дисконтинуумах также подтверждают
эти утверждения. Они с новой
и очень своеобразной стороны
выявляют связь симметрии с
Очевидно кристаллы в отношении их атомов,ионов и молекул можно рассматривать как дискретные трехмерные пространства – дисконтинуумы.
Помимо дискретных – анизотропных и неоднородных – пространств в теории различают еще и дискретные в одних и непрерывные в других направлениях пространства – семиконтинуумы I и II рода. Семиконтинуумы, будучи явлениями, переходными между континуумами и дисконтинуумами и одновременно их единством, с новых сторон выявляют диалектику пространства.
Пространственные (трехмерные) семиконтинуумы I рода могут быть получены трансляцией плоских континуумов вдоль перпендикуляра к ним. Число групп симметрии пространственных семиконтинуумов I рода бесконечно.Можно привести несколько примеров таких пространств в природе. Они проявляются, например, в так называемых смектических жидких кристаллах. Последние состоят из пленок толщиной в 1-2 молекулы, пленки лежат друг на друге, как листы в стопке бумаги, причем молекулы в них одной своей осью расположены параллельно друг другу, а двумя другими нет. Другие примеры-поле стоячих ультразвуковых волн в жидкости, образованное сгущениями и разряжениями последней, а также однородное световое поле, которое можно рассматривать как семиконтинуум для плоских волн.
Пространственные семиконтинуумы II рода могут быть получены переносом любых из одно- и двусторонних плоскостей, обладающих симметрией бесконечных слоев. Простейшие примеры семиконтинуумов II рода дает практика: с ними мы сталкиваемся при укладке стержней- бревен, труб и т.д.
Перейдем теперь к рассмотрению полностью непрерывных во всех трех направлениях пространств-континуумов. Пространственные континуумы могут быть получены путем трех непрерывных взаимно перпендикулярных переносов элементарных объектов, обладающих симметрией конечных фигур.
Примером симметрических пространственных континуумов являются разнообразные физические поля. Евклидово пространство – также один из примеров таких континнумов. Его можно получить непрерывным «размножением» в трех направлениях точки, обладающей симметрией обыкновенного шара( ∞/∞∙m). Пространство уже обычного электрического поля, в котором направление «вперед» (по силовым линиям) отлично от направления «назад» (против силовых линий), существенно отличается от пространства Евклида. Такой континуум можно получить непрерывным переносом в трех взаимно перпендикулярных направлениях одной точки с симметрией обыкновенного круглого конуса(∞∙m).
Как
известно, в теории относительности
была впервые выявлена глубокая связь
двух фундаментальных континуумов
– пространственного и
Основной вывод, неизбежно следующий из рассмотрения свойств одно-, дву-, трех-,четырех-,…,n-мерных континуумов, семиконтинуумов и дисконтинуумов, - это вывод о бесконечном – количественном и качественном разнообразии и одно- и двусторонних превращениях, переходах одних реальных пространств и времен в другие.
Эти
же выводы подтверждаются и общей
теорией относительности, согласно
которой в «большом» – в
масштабах Метагалактики –
Известно,
что все атомы правилбной кристаллической
решетки в некотором
Известно, что механику истинных частиц пронизывает принцип относительности, выраженный лоренцовыми преобразованиями. Этот принцип выражает однородность, изотропность пространства и однородность времени, с которыми связаны разные законы сохранения. Это проявляется также и в универсальности для механики всех истинных частиц зависимости энергии E от импульса p: __________
Е=√ E +c p
Где Е т с -энергия покоя, т – масса поко, с – скорость света в вакууме.
Если с/м<<c, то есть вне релятивистской области, то Е=р /2т.
Это обычный квадратичный закон дисперсии.
Однако с переходом к квазичастицам положение радикально меняется! И это прямо связано с резко иным характером малых кристаллических пространств по сравнению с «пустым» пространством малого. Очень четко и интересно резюмируют результаты такого перехода И.М. Лившиц и В.М. Агранович. Они пишут, что для квазичастиц положение радикально меняется, потому что «квазичастицы не в пустом пространстве,, не в вакууме, а в кристаллическом пространстве, которое имеет симметрию, отвечающую соответствующей пространственной группе кристалла. В связи с этим имеется выделенная система отсчета и нет прежнего принципа относительности. Поэтому нет и закона дисперсии, который имеет место для истинных частиц. Вместо этого возникает сложный закон дисперсии Е=Е(р), причем вместо импульса приходится говорить о квазиимпульсе, ибо пространство уже неоднородно и закон сохранения импульса, который является точным законом в однородном пространстве, в кристаллическом пространствевыполняется с точностью до целочисленного вектора обратной решетки, умноженной на h.
Закон
дисперсии для квазичастиц
Далее. Для истинных частиц в зависимости Е=р /2т каждому Е соответствуют поверхности, называемые поверхностями Ферми. В данном случае это просто сферы, радиус которых растет пропорционально √Е. Для квазичастиц уже в пространстве квазиимпульсов функции Е=Е(р) при каждом заданном Е соответствует периодически повторяющийся набор поверхностей Ферми, которые иногда могут смыкаться в одну поверхность, проходящую через все пространство. Придавая Е различные значения и изображая графически в итоге всю функцию Е= Е(р), можно передать рисунком все черты динамики квазичастиц. Получающиеся при таком подходе изображения топологически очень сложны и чрезвычайно напоминают абстрактные скульптуры. Они резко отличаются от примитивных по форме сфер.
Информация о работе Проявление симметрии в различных формах материи