Автор работы: Пользователь скрыл имя, 30 Ноября 2011 в 20:47, реферат
Цели работы:
Получить четкое представление о том, что такое полупроводники и их применение. Узнать, как проходит проводимость полупроводников, их свойства и особенности.
Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность. Полупроводниками называют вещества, обладающие электронной проводимостью, занимающей промежуточное положение между металлами и изоляторами. От металлов они отличаются тем, что носители электрического тока в них создаются тепловым движением, светом, потоком электронов и т.п. источником энергии. Без теплового движения (вблизи абсолютного нуля) полупроводники являются изоляторами. С повышением температуры электропроводность полупроводников возрастает и при расплавлении носит металлический характер.
Введение...................................................................................................3
Полупроводники и их применение.........................................................4
Зонная теория полупроводников..................................................4
Собственная проводимость полупроводников............................5
Примесная проводимость полупроводников...............................8
Фотопроводимость полупроводников........................................10
Полупроводниковые диоды и триоды (транзисторы)...............11
Применение полупроводников. ............................................................13
Схемы включения и применения фотоэлектронных приборов..................................................................................................14
Динамические свойства АИМС..................................................18
Вывод.......................................................................................................21
Использованная литература...................................................................22
Полупроводники
и их применение.
1.Введение
Цели работы:
Получить
четкое представление о том, что
такое полупроводники и их применение.
Узнать, как проходит проводимость полупроводников,
их свойства и особенности.
Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность. Полупроводниками называют вещества, обладающие электронной проводимостью, занимающей промежуточное положение между металлами и изоляторами. От металлов они отличаются тем, что носители электрического тока в них создаются тепловым движением, светом, потоком электронов и т.п. источником энергии. Без теплового движения (вблизи абсолютного нуля) полупроводники являются изоляторами. С повышением температуры электропроводность полупроводников возрастает и при расплавлении носит металлический характер.
Задолго до этого были
• эффект выпрямления тока на контакте металл-полупроводник.
• фотопроводимость.
Были построены первые приборы на их основе.
О.
В. Лосев (1923) доказал возможность
использования контактов
В СССР изучение
Интерес к оптическим
В
последнее время большее
2. Полупроводники и их применение.
Полупроводниками называют вещества, обладающие электронной проводимостью, занимающей промежуточное положение между металлами и изоляторами. От металлов они отличаются тем, что носители электрического тока в них создаются тепловым движением, светом, потоком электронов и т.п. источником энергии. Без теплового движения (вблизи абсолютного нуля) полупроводники являются изоляторами. С повышением температуры электропроводность полупроводников возрастает и при расплавлении носит металлический характер.
К полупроводниковым материалам относится большинство минералов, неметаллические элементы IV, V. VI групп периодической системы Менделеева, неогранические соединения (оксиды, сульфиды), некоторые сплавы металлов, органические красители. Широко применяемые полупроводниковыми материалами являются элементы IV группы периодической системы Менделеева – германий и кремний.
Различают
собственные и
примесные полупроводники.
2.1. Зонная теория твердых тел.
В основе зонной теории лежит адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы – ядра и электроны. Поскольку массы и скорости этих частиц знаительно различаются, движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находится в усредненном поле всех электронов. Вследствии этого движение электрона рассматривается в постоянном переодическом поле ядер.
Зонная теория теория твердых тел позволила истолковать существования металлов, диэлектриков и полупроводников, объясняя различия в их электрических свойствах:
• неодинаковое заполнение электронами разрешенных зон.
• ширина запрещенных зон.
Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и в зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних коллективизированных электронов изолированных атомов.
Различие
между металлами и
2.2. Собственная проводимость полупроводников.
Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока — электронов, занимающих уровни вблизи дна зоны; одновременно в валентной зоне освобождается такое же число мест на верхних уровнях. Такие свободные от электронов места на уровнях заполненной при абсолютном нуле валентной зоны называют дырками.
Распределение электронов по уровням валентной зоны и зоны проводимости определяется функцией Ферми. Вычисления показывают, что уровень Ферми лежит точно посредине запрещенной зоны (рис.1). Следовательно, для электронов, перешедших в зону проводимости, величина W—WF мало отличается от половины ширины запрещенной зоны. Уровни зоны проводимости лежат на хвосте кривой распределения. Поэтому вероятность их заполнения электронами можно находить по формуле:
Количество электронов, перешедших в зону проводимости, будет
пропорционально вероятности (1.1). Эти электроны, а также, как мы увидим ниже, образовавшиеся в таком же числе дырки, являются носителями тока.
Поскольку ,проводимость пропорциональна числу носителей, она также должна быть пропорциональна выражению (1.1). Следовательно, электропроводность полупроводников быстро растет с температурой, изменяясь по закону:
где ΔW—ширина запрещенной зоны.
Если
на графике откладывать
Типичными
полупроводниками являются элементы IV
группы периодической системы
При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один электрон (такой случай показан на рис. 3).
Покинутое электроном место перестает быть нейтральным, в его окрестности возникает избыточный положительный заряд + е — образуется дырка. На это место может перескочить электрон одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся электрон.
Если свободный электрон встретится с дыркой, они рекомбинируют (соединяются). Это означает, что электрон нейтрализует избыточный положительный заряд, имеющийся в окрестности дырки, и теряет свободу передвижения до тех пор, пока снова не получит от кристал
лической решетки энергию, достаточную для своего высвобождения. Рекомбинация приводит к одновременному исчезновению свободного электрона я дырки. На схеме уровней (рис. 1) процессу рекомбинации соответствует переход электрона из зоны проводимости на один из свободных уровней валентной зоны.
Итак, в полупроводнике идут одновременно два процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса быстро растет с температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок. Следовательно, каждой температуре соответствует определенная -равновесная концентрация электронов и дырок, величина которой изменяется с температурой по такому же закону, как и σ.
В отсутствие внешнего электрического поля электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок — в направлении поля. Оба движения — и дырок, и электронов — приводят к переносу заряда вдоль кристалла. Следовательно, собственная электропроводность обусловливается как бы носителями заряда двух знаков— отрицательными электронами и положительными дырками.
Собственная проводимость
2.3. Примесная проводимость.
Этот вид проводимости возникает, если некоторые атомы данного полупроводника
заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов. На рис. 4 условно изображена решетка германия с примесью 5-валентных атомов фосфора. Для образования ковалентных связей с соседями атому фосфора достаточно четырех электронов. Следовательно, пятый валентный электрон оказывается как бы лишним и легко отщепляется от атома за счет энергии теплового движения, образуя странствующий свободный электрон. В отличие от рассмотренного раньше случая образование свободного электрона не сопровождается нарушением ковалентных связей, т. е. образованием дырки. Хотя в окрестности атома примеси возникает избыточный положительный заряд, но он связан с этим атомом и перемещаться по решетке не может. Благодаря этому заряду атом примеси может захватить приблизившийся к нему электрон, но связь захваченного электрона с атомом будет непрочной и легко нарушается вновь за счет тепловых колебаний решетки.