Нанотехнологии очистки воды

Автор работы: Пользователь скрыл имя, 11 Декабря 2011 в 10:04, реферат

Краткое описание

Вода — ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.

Содержание работы

Методы очистки сточных вод 4
Электрохимические установки для очистки питьевой воды 7
Технологический процесс очистки воды 16
Использование нанотехнологий при очистке воды 19
Метод обеззараживания воды с помощью наноструктур 22
Нанотехнологии на службе опреснения морской воды 24
Заключение 27
Список использованных источников 27

Содержимое работы - 1 файл

Записка.doc

— 540.00 Кб (Скачать файл)

     Результаты  очистки воды при помощи нанотехнологий зависят от степени её загрязнения, - добавила группа ученых. Она может быть использована для удаления осадков, химических отходов промышленности, заряженных частиц, бактерий и других патогенных элементов. Ученые объясняют это тем, что следы токсичных элементов таких как, например, мышьяк, или вязкие жидкие нечистоты как, например, нефть могут быть удалены при помощи нанотехнологий.

     "Основные  преимущества использования нанофильтров, по сравнению со стандартными  образцами в том, что требуется меньше давления, чтобы пропустить воду через фильтр, они более эффективные, и у них большая площадь рабочей поверхности и к тому же легче подаются очистке по сравнению со стандартными методами", - сообщает группа ученых.

     Например, углеродные мембраны из нанотрубок могут удалить почти все типы загрязняющих веществ в воде, включая мутность, нефть, бактерии, вирусы и органические загрязняющие вещества. Хотя поры углеродных нанотрубок значительно меньше, тем не менее, они обладают такой же или лучшей пропускной способностью, чем у стандартных материалов, с большими порами, возможно из-за плавного строения нанотрубок. Нановолокна фильтров из алюминия и другие материалы из нановолокон удаляют отрицательно заряженные загрязняющие вещества как, например, вирусы, бактерии, и органические и неорганические коллоиды намного быстрее, чем стандартные фильтры.

     "Пока  поколение нанофильтров настоящего  времени может быть сравнительно  простым, вероятно, что будущие  поколения нанотехнологических  устройств по очистке воды извлекут выгоду из свойств новых нанослойных материалов", - утверждает группа ученых.

     Исследователи отмечают, что несколько фундаментальных  аспектов нанотехнологий вызвали беспокойство среди общественных и активистских групп. Они допускают, что угрозы связанные с наноматериалами не могут быть такими же как и угрозы связанные с обычными вариантами известных материалов, поскольку значительно большая объемная поверхность и коэффициент объема наночастиц может сделать их более реактивными, чем в обычных материалах и ведет к пока неизвестному и неиспытанному взаимодействию с биологическими поверхностями. Очистка воды, основанная на нанотехнологии, еще не повредила человеческому здоровью и не привела к проблемам окружающей среды, но мнение группы ученых совпадает со многими другими в том, что необходимо продвигать исследования биологического взаимодействия наночастиц и работы в этом направлении должны быть выполнены.

 

     

Метод обеззараживания  воды с помощью  наноструктур

 

     В Стэнфордском университете США1 изготовлена модель фильтра из хлопчатобумажной ткани с добавлением нанопроволок и нанотрубок, предназначенного для обеззараживания воды.

     Известные варианты фильтров, которые механически  задерживают микроорганизмы, пропускают воду довольно медленно; кроме того, жидкость приходится подавать под напором, а это требует дополнительного оборудования и увеличивает расход электроэнергии. Новая модель, по словам авторов, работает примерно в 80 000 раз быстрее, демонстрируя пропускную способность в 100 000 л•ч-1•м-2. При этом вода может поступать естественным образом — под действием силы тяжести.

     

     Серебряные  нанопровода в структуре ткани, которой принадлежат крупные  волокна (иллюстрация авторов работы).

     Основой фильтра служит обычная хлопчатобумажная ткань, которую на несколько минут погружают в раствор серебряных нанопроволок (благородного металла на их производство уходит, как уверяют учёные, совсем немного) и углеродных нанотрубок. Диаметр последних доходил до одного нанометра, а их длина измерялась единицами микрометров, тогда как нанопроволоки диаметром 40–100 нм вытягивались до 10 мкм. После такой обработки ткань приобретает отличные токопроводящие свойства.

     Обеззараживающий  эффект даёт пропускание небольшого тока. Фильтр можно запитать от компактной солнечной батареи или двух 12-вольтовых автомобильных аккумуляторов. В экспериментах с бактериями Escherichia coli фильтр толщиной около 6,5 см снижал концентрацию микроорганизмов более чем на 98%.

     В ближайшем будущем исследователи  планируют провести опыты с другими  видами бактерий.

     Сравнение эффективности действия описанного выше варианта фильтра и его «облегчённых»  модификаций.

     

 

     

Нанотехнологии  на службе опреснения морской воды

 

     Традиционные  технологии опреснения морской воды очень энергоемки, поэтому немецкие ученые работают над совершенствованием более экономичного метода на основе обратного осмоса.

     Как известно, многие регионы мира испытывают острый дефицит пресной воды. Один из путей его преодоления - опреснение воды морской. Беда лишь в том, что  традиционно используемая для этого технология дистилляции, то есть, проще говоря, выпаривание и конденсация, чрезвычайно энергоемка. Именно это обстоятельство и побуждает инженеров работать над совершенствованием альтернативных методов опреснения воды.

     Наиболее  перспективной считается технология на основе так называемого обратного  осмоса. Речь идет о подаче раствора, в данном случае морской воды, под  давлением на специальную полупроницаемую  мембрану, которая пропускает растворитель, то есть воду, и задерживает растворенное вещество, то есть морскую соль. В последние годы наиболее активно разработка таких специальных мембран ведется в Научно-исследовательском центре GKSS в городке Гестхахт на севере Германии. Здесь, в Институте изучения полимеров, уже давно разрабатывают мембраны самого разного назначения - для очистки сточных вод, для фильтрации выбрасываемых в атмосферу промышленных газов, для опреснения морской воды. "Вот эти последние мы и пытаемся усовершенствовать", - говорит профессор Клаус-Виктор Пайнеман (Klaus-Viktor Peinemann).

     Толщина самой фильтрующей мембраны составляет всего 0,1 микрометра - это в сто  раз тоньше человеческого волоса. Однако она должна выдерживать давление в 70, а то и 80 бар. Это возможно только при наличии специальной опорной структуры. Поэтому стандартная пленка для установок опреснения морской воды представляет собой нечто вроде трехслойного сэндвича: нижний слой - ткань с крупными порами, следующий слой - микропористая ткань с порами в полмикрометра, и лишь затем - сверху - полимерная фильтрующая мембрана.

     Установки на основе технологии обратного осмоса успешно функционируют, обеспечивая  десятикратную экономию энергии  по сравнению с технологией дистилляции. Правда, у ученых до сих пор нет  единого мнения относительно механизма проникновения воды сквозь фильтрующую мембрану, однако большинство склоняется сегодня к тому, что вода просто диффундирует сквозь полимерный материал мембраны. Это и навело профессора Пайнемана на идею интегрировать в мембрану мельчайшие поры, столь тонкие, что они пропускали бы молекулы воды, но задерживали более крупные молекулы соли.

     По  словам ученого, для этой цели оптимально подходят так называемые углеродные нанотрубки - миниатюрные пустотелые цилиндрические структуры из чистого  углерода. Внутренний диаметр нанотрубок, предназначенных для интеграции в фильтрующую мембрану, не должен превышать 1 нанометра - это в 50 тысяч раз тоньше человеческого волоса, - иначе сквозь них проскользнут и молекулы соли.

     Расчеты показывают, что мембрана, густо  усеянная такими миниатюрными капиллярами, теоретически способна обеспечить весьма значительное - от десяти- до стократного - увеличение скорости опреснения воды. Правда, эти расчеты пока не получили экспериментального подтверждения, - признается профессор Пайнеман: "До сих пор мы смогли в лаборатории получить лишь крохотные образцы такой наномембраны. Но те немногие измерения, которые нам все же удалось на них провести, говорят о реалистичности таких расчетных оценок".

     Научно-исследовательский  центр GKSS в ГестхахтеВпрочем, на пути к серийному изделию разработчикам предстоит преодолеть еще немало трудностей. Во-первых, однослойные нанотрубки с указанными выше параметрами обходятся пока довольно дорого. Во-вторых, до сих пор никто не смог предложить эффективный метод интеграции миллионов нанотрубок в полимерную мембрану. Американские и австралийские исследователи, работающие в этом направлении, не жалеют сил на то, чтобы расположить нанотрубки в мембране строго упорядоченно, параллельно друг к другу и перпендикулярно к поверхности мембраны.

     Профессор Пайнеман выбрал иной подход: "Поскольку  толщина мембраны примерно 0,1 микрометра, а длина нанотрубок – 1-2 микрометра, мы просто добавляем как можно  больше нанотрубок в полимер при  производстве мембраны, ничуть не заботясь об их упорядочении. Ведь даже при самом хаотичном расположении нанотрубок окажется немало таких, которые протыкают мембрану насквозь, так что одно отверстие трубки находится по одну сторону мембраны, а второе - по другую. Этого должно быть достаточно".

     Пока профессору Пайнеману и его коллегам удалось таким методом повысить пропускную способность стандартной мембраны лишь на 40-50 процентов. Это хоть и немало, однако очень далеко от расчетных показателей. К тому же при этом слегка снизилась и эффективность опреснения - с 98 до 95 процентов. Так что о подлинном прорыве говорить пока рано. Но зато исследования, начатые пять лет назад в рамках недавно завершившегося европейского проекта NanoMemPro, ведутся теперь в рамках нового проекта CarboMembran, к которому подключились химический концерн Bayer - один из крупнейших производителей углеродных нанотрубок, - многопрофильный технологический концерн Siemens, а также Рейнско-Вестфальская высшая техническая школа в Ахене. А это уже внушает надежды на скорый успех.

 

Заключение

 

      Защита  водных ресурсов от истощения и загрязнения  и их рационального использования  для нужд народного хозяйства  — одна из наиболее важных проблем, требующих безотлагательного решения. Одним из основных направлений работы по охране водных ресурсов является внедрение новых технологических процессов производства, переход на замкнутые (бессточные) циклы водоснабжения, где очищенные сточные воды не сбрасываются, а многократно используются в технологических процессах, использование новых технологий и материалов. Наиболее перспективным в этом смысле является использование нанотехнологий.

Список  использованных источников

 
    1. http://www.o8ode.ru/article/water/nanotechnology/nanouse.htm
    2. http://www.o8ode.ru/article/water/nanotechnology/nanoopr.htm
    3. http://www.o8ode.ru/article/water/nanotechnology/nanotechnology.htm
    4. http://www.t-l.ru/news/120366139615206.shtml
    5. http://www.o8ode.ru/article/water/nanotechnology/purenano.htm

Информация о работе Нанотехнологии очистки воды