Автор работы: Пользователь скрыл имя, 02 Декабря 2010 в 13:53, реферат
Главная причина стремительного роста внимания к лазерам кроется, прежде всего, в исключительных свойствах этих приборов. Уникальные свойства лазеров - монохроматичность (строгая одноцветность), высокая когерентность (согласованность колебаний), острая направленность светового излучения.
Существует несколько видов лазеров:
•полупроводниковые
•твердотельные
•газовые
•рубиновый
Введение. 3
Виды лазеров 3
Газовый лазер. 3
Полупроводниковые лазеры. 4
Создание инверсной населенности в полупроводниках. 4
Рубиновые “спички”. 6
Применение лазеров. 7
Практическое и промышленное применение лазера. 8
Лазеры в вычислительной технике. 8
Лазерный принтер. 8
Оптическая цифровая память. 9
Заключение. 9
Список литературы: 10
Министерство образования и науки Республики Казахстан
Карагандинский Государственный Университет
им.
Е.А. Букетова
НА ТЕМУ:
ЛАЗЕР.
ВИДЫ ЛАЗЕРОВ
Выполнил: | |
Караганда 2005г.
Термину “лазер” нет ещё и десяти лет от роду, а кажется, что существует он давным-давно, - так широко он вошел в обиход. Разумеется, столь огромный интерес вызывает не само слово “лазер”, а названный так квантовый прибор для генерации электромагнитных волн оптического диапазона. Появление лазеров - одно из самых замечательных и впечатляющих достижений квантовой электроники, принципиально нового направления в науке, возникшего в середине 50-х годов.
Впервые генераторы электромагнитного излучения, использующие механизм вынужденного перехода, были созданы в 1954 г. советскими физиками А.М.Прохоровым и Н.Г.Басовым и американским физиком Ч.Таунсом на частоте 24 ГГц. Активной средой служил аммиак.
Первый
квантовый генератор
Главная причина стремительного роста внимания к лазерам кроется, прежде всего, в исключительных свойствах этих приборов. Уникальные свойства лазеров - монохроматичность (строгая одноцветность), высокая когерентность (согласованность колебаний), острая направленность светового излучения.
Существует несколько видов лазеров:
Первым квантовым генератором света, действующим в непрерывном режиме, стал газовый лазер, который работал на нейтральных атомах смеси гелия и неона.
Схема
газового лазера представлена на рис.
Инверсное состояние создается
в смеси двух газов: гелия с
парциальным давлением 130 Па (1 мм рт.
ст.) и неона с парциальным
Излучательный переход в основное состояние с уровня 2s для атомов гелия запрещен. Атомы гелия, сталкиваясь с атомами неона, которые на уровне возбуждения 2s имеют ту же энергию, что и атомы гелия на уровне 2s, передают им свою энергию. Инверсная населенность достигается между отдельными уровнями 2sи 2р, если время жизни на уровнях 2р достаточно мало.
Газоразрядная трубка с торцов ограничена стеклянной пластинкой, приклеенной под углом Брюстера к оси трубки, что позволяет исключить отражение поляризованного излучения лазера на торцевых стенках трубки. Трубка помещается между зеркалами с диэлектрическими покрытиями, что обеспечивает необходимый коэффициент отражения от этих зеркал на частоте генерации. Газовые гелий-неоновые лазеры генерируют излучение на длине волны 0,63 мкм.В настоящее время существует множество лазеров, излучение которых перекрывает весьма широкий диапазон спектра электромагнитных волн от λ < 1 см. до λ = 0,1 мкм.
Полупроводниковые лазеры отличаются от газовых и твердотельных тем, что излучающие переходы происходят в полупроводниковом материале не между дискретными энергетическими состояниями электрона, а между парой широких энергетических зон. Поэтому переход электрона из зоны проводимости в валентную зону с последующей рекомбинацией приводит к излучению, лежащему в относительно широком спектральном интервале и составляющему несколько десятков нанометров, что намного шире полосы излучения газовых или твердотельных лазеров.
Рассмотрим собственный полупроводник. В условиях термо-динамического равновесия валентная зона полупроводника полностью заполнена электронами, а зона проводимости пуста. Предположим, что на полупроводник падает поток квантов электромагнитного излучения, энергия которых превышает ширину запрещенной зоны hv>Eg. Падающее излучение поглощается в веществе, так как образуются электронно-дырочные пары. Одновременно с процессом образования электронно-дырочных пар протекает процесс их рекомбинации, сопровождающийся образованием кванта электромагнитного излучения. Согласно правилу Стокса - Люммля энергия излученного кванта меньше по сравнению с энергией генерирующего кванта. Разница между этими энергиями преобразуется в энергию колебательного движения атомов кристаллической решетки. В условиях термодинамического равновесия вероятность перехода с поглощением фотона (валентная зона – зона проводимости) равна вероятности излучательного перехода (зона проводимости - валентная зона).
Предположим,
что в результате какого-то внешнего
воздействия полупроводник
рис. 1
Так как все состояния вблизи дна зоны проводимости заполнены электронами, а все состояния с энергиями вблизи потолка валентной зоны заполнены дырками, то переходы с поглощением фотонов, сопровождающиеся увеличением энергии электронов становятся невозможными. Единственно возможными переходами электронов в полупроводнике в рассматриваемых условиях являются переходы зона проводимости - валентная зона, сопровождающиеся рекомбинацией электронно-дырочных пар и испусканием электромагнитного излучения. В полупроводнике создаются условия, при которых происходит усиление электромагнитной волны. Иными словами, коэффициент поглощения получается отрицательным, а рассматриваемая ситуация отвечает состоянию с инверсной плотностью населенности.
Поток квантов излучения, энергия которых находится в пределах от
hv=Ec-Ev до
hv=Fn-Fp , распространяется через
Для реализации процесса излучательной рекомбинации необходимо выполнить два условия. Во-первых, электрон и дырка должны локализоваться в одной и той же точке координатного пространства. Во-вторых, электрон и дырка должны иметь одинаковые по значению и противоположно направленные скорости. Иными словами, электрон и дырка должны быть локализованы в одной и той же точке k-пространства. Так как импульс образующегося в результате рекомбинации электронно-дырочной пары фотона значительно меньше по сравнению с квазиимпульсами электрона и дырки, то для выполнения закона сохранения квазиимпульса требуется обеспечить равенство квзиимпульсов электрона и дырки, участвующих в акте излучательной рекомбинации.
Оптическим
переходам с сохранением
Таким образом, для получения излучательной рекомбинации необходим прямозонный полупроводник, например, GaAs. Вообще, придерживаясь строгой теории можно доказать, что инверсная населенность возможна лишь при условии Ec-Eg<Fn-Fp.
Широко
используемыми на практике способами
создания инверсной населенности
являются: 1) возбуждение за счет инжекции
неосновных носителей через p-n - переход;
2) возбуждение электронным лучом;
3) возбуждение в сильном
Первым в оптическом диапазоне волн заработал лазер на розовом рубине, испускающий ярко – красные световые лучи с длиной волны около 0,7мк. По химическому составу он представлял собой корунд с примесью оксида хрома Сг2О3 (0,05%). При достижении инверсной населенности использовались возбужденные состояния ионов Сг3+. Концентрация ионов хрома в кристалле розового рубина первого лазера составляла 1,62-1019 см-3. Для ионов хрома характерна так называемая трехуровневая схема расположения энергетических состояний. Инверсная населенность в рубине достигалась оптическим методом при помощи мощной импульсной ксеноновой лампы. Под воздействием ультрафиолетового излучения лампы ионы хрома возбуждаются с вероятностью р В и переходят на систему уровней 3. Отсюда они могут перейти или снова на уровень 1 с вероятностью А + р В или на уровень 2 в результате без излучательного перехода с вероятностью S - Энергия, выделяющаяся при таком переходе, идет на нагревание кристалла. Состояние 2 для ионов хрома является метастабильным, оно обусловливает фосфоресценцию рубина в красной области спектра. При определенной концентрации ионов хрома и мощности излучения, возбуждающего ионы хрома (она называется мощностью «накачки»), удается создать такое распределение ионов по уровням, при котором N2 > N1, т.е. получить инверсное состояние. Между уровнями 1 и 2 возможны переходы, подобные переходам в двухуровневой системе.
В качестве системы, обеспечивающей обратную связь, применялся по предложению А.М.Прохорова оптический резонатор Фабри-Перо. Зеркала резонатора 3 и 3 наносили непосредственно на торцы тщательно отполированного (с точностью до λ/8) рубинового стержня. Кристалл рубина помещали вдоль оси спиральной лампы накачки Л. В более поздних конструкциях применялись иные схемы оптического возбуждения кристалла, позволяющие улучшить условия освещения рубина. Например, использовались зеркальные отражатели, имеющие форму эллиптических цилиндров. В одном из фокусов такого отражателя помещался кристалл рубина Р в другом - цилиндрическая лампа накачки Л . Рубиновый лазер работает в импульсном режиме, генерируя волны длиной 0,68 мкм.
Прежде всего, следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой мощностью, может обратимо изменять физические характеристики вещества, что приводит к различным нелинейно-оптическим явлениям.
Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна также плавная перестройка частоты. Поэтому лазеры широко применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности (высоким разрешением). Лазеры позволяют также осуществлять избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических реакций, управление развитием этих реакций, исследование их кинетики. Пикосекундные лазерные импульсы дали начало исследованиям целого ряда быстропротекающих процессов в веществе и, в частности, в биологических структурах. Отметим, например, фундаментальные исследования процессов фотосинтеза. Эти процессы весьма сложны и, к тому же, протекают крайне быстро — в пикосекундной временной шкале. Использование сверхкоротких световых импульсов дает уникальную возможность проследить за развитием подобных процессов и даже моделировать отдельные их звенья.