Автор работы: Пользователь скрыл имя, 18 Февраля 2013 в 18:26, лабораторная работа
Цель работы - ознакомление с физическими процессами в ЭДП, изучение вольтамперных характеристик диодов из германия и кремния и их зависимости от ширины запрещенной зоны полупроводника и температуры, определение ширины запрещенной зоны германия, изучение p-n-перехода как приемника света (фотодиода).
Цель работы - ознакомление с физическими процессами в ЭДП, изучение вольтамперных характеристик диодов из германия и кремния и их зависимости от ширины запрещенной зоны полупроводника и температуры, определение ширины запрещенной зоны германия, изучение p-n-перехода как приемника света (фотодиода).
ЭЛЕКТРОНЫ И ДЫРКИ В ПОЛУПРОВОДНИКАХ
В твердом теле атомы находятся
друг от друга на расстоянии порядка
атомного размера, поэтому в нем
валентные электроны могут
Разорванная связь становится блуждающей по кристаллу дыркой, поскольку электрон соседней связи быстро занимает место ушедшего. Недостаток электрона у одной из связей означает наличие у пары атомов единичного положительного заряда, который переносится вместе с дыркой. Электроны и дырки - свободные носители заряда в полупроводниках. В идеальных кристаллах, не имеющих ни примесей, ни дефектов, возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрация обоих типов носителей равны между собой.
Для образования электронно-
Помимо процесса образования электронов и дырок идет обратный процесс - их исчезновение, или рекомбинация. Электрон проводимости, оказавшись рядом с дыркой, восстанавливает разорванную связь. При этом исчезают один электрон проводимости и одна дырка. При отсутствии внешних воздействий, например света, устанавливается динамическое равновесие процессов, протекающих в обоих направлениях. Равновесные концентрации электронов и дырок определяются абсолютной температурой Т, шириной запрещенной зоны Ед, концентрацией примесей и другими факторами. Однако произведение концентраций электронов и дырок (n и p соответственно) не зависит от количества примесей и определяется для данного полупроводника температурой и величиной Eд:
где k – постоянная Больцмана; А – коэффициент пропорциональности.
Рассмотрим два следствия из формулы. В собственном (беспримесном) полупроводнике одинаковые концентрации электронов и дырок будут равны
В примесных полупроводниках при достаточно большом количестве примеси концентрация основных носителей примерно равна концентрации примеси. Например, в полупроводнике n-типа концентрация электронов равна концентрации донорных атомов; тогда концентрация дырок (неосновных носителей) равна:
ЭЛЕКТРОННО-ДЫРОЧНОЙ ПЕРЕХОД В РАВНОВЕСНОМ СОСТОЯНИИ
В монокристалле можно создать резкий переход от полупроводника n-типа к полупроводнику p-типа. На рисунке левая от линии ММ часть кристалла, p-типа, содержит основные -носители - дырки, примерно такое же количество отрицательных акцепторных ионов и незначительное количество электронов. Правая часть, n-типа, содержит соответственно электроны проводимости (основные носители), положительные донорные ионы и небольшое количество дырок.
ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ИДЕАЛЬНОГО ЭДП
Зависимость I(U) называют вольт-амперной характеристикой ЭДП (диода).
В зависимости от значения питающего напряжении и полярности источника изменяется высота барьера в ЭДП при неизменной полярности двойного слоя зарядов. Поскольку неосновные носители "скатываются" с барьера, ток неосновных носителей остается постоянным при изменениях высоты барьера. Ток основных носителей, которые "взбираются" на барьер, очень чувствителен к его высоте: при повышении барьера он быстро уменьшается до нуля, а при понижении барьера может возрасти на несколько порядков. Чтобы получить зависимость тока от напряжения, необходимо знать энергетический спектр частиц. В целом эта зависимость довольно сложная, но для описания процессов в ЭДП необходимо знать только самую "энергетическую" честь спектра, "хвост" распределения, поскольку в практических случаях только самые быстрые частицы способны преодолеть барьер. Спектр таких быстрых электронов экспоненциальный.
При прямом смешении ток
протекает в положительном
Теоретическая вольт-амперная характеристика р - п -перехода, рассчитанная по формуле при комнатной температуре Т= 295 К, представлена на рисунке и в таблице (напряжение U в вольтах). Зависимость I(U) обладает резко выраженной нелинейностью, т.е. проводимость (или сопротивление) р - п -перехода сильно зависит от U. При обратном смещении через переход течет ток Is неосновных носителей, называемые током насыщения, который обычно мал и почти не зависит от напряжения.
Как видно из формулы, ток насыщения задает масштаб по оси I вольт-амперной характеристики. Значение Is пропорционально площади перехода, концентрации неосновных носителей и их скорости хаотического движения. Учитывая формулу, получаем следующую зависимость тока насыщения от ширины запрещенной зоны и температуры:
где С - коэффициент
Экспоненциальный множитель
Из опыта, в котором измерен ток насыщения при различной температуре, можно найти значение Ед. Полученную зависимость следует сравнить с формулой, которую логарифмированием преобразуем к виду
Если точки ложатся на прямую, то опыт подтверждает экспоненциальную зависимость тока от обратной температуры.
ЭДП В КАЧЕСТВЕ ПРИЕМНИКА СВЕТА (Фотодиод)
Свет может разорвать
электронную связь в
При освещении p-n-перехода образуются дополнительные электронно-дырочные пары. При достаточном освещении они могут существенно увеличить концентрацию неосновных носителей, которых было мало, практически не изменяя в процентном отношении количество основных носителей. При этой к существовавшему в темноте току неосновных носителей - Is добавляется фототок - I, протекающий в том же направлении.
Фототок равен разности тока и тока называемого в данной случае темновым током. При достаточно большой освещенности темновой ток может составлять пренебрежимо малую долю полного тока. Электронно-дырочный переход, специально изготовленный для детектирования света и работающий при обратном смещении, называется фотодиодом. Это простой и удобный приемник света, фототок которого пропорционален освещенности Е.
ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ
Упрощенная схема, в которой не показаны переключатели, дана на рис. Диод Д (кремниевый или германиевый) через резистор R подключен к источнику постоянного напряжения (ИП), изменяемого от 0 до 15 В. Переменный резистор R1 также используется для изменения напряжения на диоде. Цифровым вольтметром с большим сопротивлением измеряют напряжения U на диоде и Ur на известном сопротивлении R для вычисления тока I=Ur/R. Для измерения малых токов устанавливают большое сопротивление.
Два диода, нагреватель и один спай термопары плотно закреплены на металлической пластине, расположенной в камере с крышкой. Для опытов со светом защитная оболочка кремниевого диода удалена, и при открытой крышке р-п -переход можно осветить лампой. Для измерения температуры диодов служит термопара. Она состоит из двух металлических проводников - медного и константанового (специальный сплав), спай которых находится в тепловом контакте с диодами при измеряемой температуре Т. Другие концы проводов соединены с вольтметром, они имеют комнатную температуру T1 - 295 К. Когда температуры Т и Т1 различны, в цепи возникает термоЭДС UT, пропорциональная разности температур и измеряемая вольтметром. Температуру диодов в Кельвинах можно вычислить по формуле
T=295+24.4 UT,
где напряжение UT следует взять в милливольтах.