Автор работы: Пользователь скрыл имя, 08 Октября 2013 в 19:43, контрольная работа
В истории развития физики было немало революций, кардинально изменявших научную парадигму и взгляды ученых на методы познания и устройство мира. Однако то, что произошло с естествознанием в первой четверти XX века, не было очередной сменой основных законов. Если раньше все в окружающем нас мире было предсказуемо, то с появлением квантовой механики он стал случайным.
Введение.
І. 1. Особенности становления квантовой механики и ее предмета.
2. Основные принципы квантово-механического описания.
ІІ. 2. Чем отличаются статистические закономерности в природе от динамических. Приведите примеры.
ІІІ. 1. За какое выдающееся открытие два советских физика и один американский были удостоены в 1963 г. Нобелевской премии. Как оно связано с квантовой механикой.
Заключение.
Список использованной литературы.
2.4 Принцип дополнительности Н. Бора.
Квантовые объекты относительны к средствам наблюдения. О параметрах квантовых явлений можно судить лишь после тоо как они провзаимодействовали со средствами наблюдения, т.е. приборами.
«Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят явления».
При этом приходится учитывать,
что приборы, которые используются
для измерения параметров, связанных
между собой соотношением неопределенностей,
разнотипны. Исследователи вынуждены
прибегать к использованию
«…Данные, полученные при различных условиях опыта, не могут быть охвачены одной-единственной картиной; эти данные должны рассматриваться как дополнительные в том смысле. Что только совокупность разных явлений может дать более полное представление о свойствах объекта». В этом как раз и состоит содержание принципа дополнительности.
Согласно квантовой механике,
каждое отдельно проведенное измерение
разрушает микрообъект: после измерения
его волновая функция перестает
существовать. Чтобы провести измерение
приходится заново готовить микрообъект.
Это обстоятельство существенно
усложняет процесс синтеза
Бор соотносил принцип
дополнительности не только с физическими
науками. По мысли Бора, возможности
живых существ столь
2.5 Туннельный эффект
Любой потенциальный барьер может быть преодолен в том случае, если кинетическая энергия тела (Е) больше его потенциальной энергии (U) так сказать, на вершине барьера
Е = Uо
С позиции квантовой механики, частица попав в область потенциального барьера, не обладает точным значением импульса, а значит, и кинетической энергии. В соответствии с соотношением неопределенностей, неопределенность импульса частицы - это гарантия того, что вероятность достижения частицей необходимого для преодоления барьера импульса не равна нулю. Любая квантовая частица имеет шанс преодолеть потенциальный барьер. Именно в этом состоит содержание так называемого туннельного эффекта.
Квантово- механическое объяснение туннельного эффекта с позиций классической физики кажется странным, но именно оно подтверждается данными многочисленных экспериментов.
В термоядерных реакциях происходит необходимое для их слияния сближение положительно заряженных и, следовательно, отталкивающихся друг от друга ядер-реагентов. Значительную роль в этом сближении опять играет туннельный эффект.
Частица в потенциальной яме
Квантовая частица, находящаяся в потенциальной яме, в силу неопределенности величины ее импульса не может покоиться. Следовательно, ее энергия на может быть равна нулю. В полном соответствии с аппаратом квантовой механики энергия частицы принимает дискретные (а не любые!) значения.
Потенциальная яма- абстракция. Используется эта абстракция для того, чтобы понять поведение частиц в силовых полях.
2.6 Принцип суперпозиции
Принцип суперпозиции состоит в том, что если квантовый объект может находиться в состояниях, описываемых волновыми функциями, то возможно состояние, изображаемое волновой функцией.
Квантово-механический принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн.
ІІ. Чем отличаются статистические закономерности в природе от динамических. Приведите примеры
Все теории можно разделить на два класса: динамические и статистические. В классической физике считалось, что предсказание будущего механической системы осуществляется однозначным образом.
Главное отличие статистических
закономерностей от динамических в
том, что в статистических законах
необходимость выступает в
Динамические законы представляют собой первый низкий этап в процессе познания окружающего нас мира.
Статистические законы обеспечивают более современное отображение объективных связей в природе: они выражают следующий, более высокий этап познания.
Термин «динамический» призван отобразить причины изменений физических явлений, каковыми признаются силы. Строго говоря, динамические закономерности необязательно связывать именно с феноменом силы (в общей теории относительности не используется понятие силы, а понятие динамической закономерности остается в силе). Под динамическими закономерностями имеются в виду однозначные предсказания.
Оказавшись перед
Физические закономерности всегда имеют не динамический, а статистический (вероятностный) характер. Понятие динамической закономерности, фактически относится не к самим явлениям, а к способу их рассмотрения. В случае, если пренебрегают учетом квантованности явлений (часто это равносильно тому, что постоянную Планка h приравнивают к нулю), вместо вероятностной предсказуемости появляется однозначная.
В динамической теории состояние
системы определяется значениями характеризующих
ее физических величин. Динамическая теория
позволяет предсказывать
Исторически первая научная теория - классическая механика - теория динамическая. Она стала образцом, по которому кроились другие разделы классического естествознания: термодинамика, электродинамика, теория относительности, теория химического строения, систематика живых существ. Сформировалось убеждение, что динамические теории несут наиболее фундаментальное знание.
Теория, в которой состояние системы определяется заданием вероятностей тех или иных значений физических величин относится к статистическим теориям.
Статистическая теория позволяет предсказывать лишь вероятности тех или иных значений физических величин, характеризующих систему.
Первые статистические теории стали возникать в XІX в.: молекулярно-кинетическая теория и, более широко, статистическая механика в физике, дарвиновская теория эволюции (основанная на представлениях о неопределенной, т.е. случайной изменчивости), менделеевская генетика. Большинство же ныне действующих статистических теорий появились уже в XІX в. Со статистическими теориями в естествознание вошло фундаментальное понятие флуктуации - это случайное отклонение характеристик системы от наиболее вероятного или среднего значения.
Динамические теории не учитывают и не допускают возможности – флуктуаций.
Статистические - допускают, учитывают и даже выводят на передний план.
ІІІ. 1. За какое выдающееся открытие два советских физика и один американский были удостоены в 1963г. Нобелевской премии. Как оно связано с квантовой механикой.
Н. Г. Басов, А. М. Прохоров, и
независимо от них американский физик
Ч. Таунс использовали явление индуцированного
излучения для создания микроволнового
генератора радиоволн с длиной волны
равной 1,27 см. Это был первый квантовый
генератор на молекулах аммиака
- источник электромагнитного излучения
в СВЧ - диапазоне (мазер). Н.Г. Басов
выдвинул идею применения полупроводников
для квантовых генераторов
Очень перспективно применение лазерного луча для связи, особенно в космическом пространстве, где нет поглощающих свет облаков.
Создание лазеров - пример того, как развитие фундаментальной науки (квантовой механики) приводит к гигантскому прогрессу в самых различных областях техники и технологии.
Заключение.
Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе квантовой механики удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы квантовой механики непосредственно проявляются в поведении макроскопических объектов.
Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах квантовой механики. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Таким образом, квантовая механика становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.
Список использованной литературы:
1. Горелов А.А. Концепции современного естествознания: учеб. пособие. - М: Высш. Образование, 2006.
2. Канке В.А. Концепции современного естествознания: учеб. пособие для студентов вузов. - М.: Логос,2004.
3. Концепции современного естествознания: учеб. для вузов / под ред. Проф. В.Н. Лавриненко, В.П. Ратникова. - М.: ЮНИТИ - ДАНА,2003.
4. Концепции современного естествознания / под ред. Проф. С.И. Самыгина.- Ростов н/ Д: « Феникс», 2005.
5. Лихин А.Ф. Концепции современного естествознания: учеб. - М.: ТК Велби; Изд-во Проспект, 2006
6. Рузавин Г.И. Концепции современного естествознания: учеб. для вузов. - М.: Культура и спорт. ЮНИТИ,1999
7. Машкин Н.Ф. Квантовая физика. - М.,2001.
8. Мигдал А.Б. Квантовая физика и Нильс Бор. - М.: Знание.