Голография

Автор работы: Пользователь скрыл имя, 21 Ноября 2011 в 16:47, реферат

Краткое описание

Оптика - раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света с веществом, - относится к числу наиболее старых и хорошо освоенных областей науки. Примерно до середины XX столетия казалось, что оптика как наука закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях. Здесь, прежде всего, имеется в виду голография, которая значительно расширяет область практического использования волновых явлений и дает толчок теоретическим исследованиям.

Содержание работы

Содержание
Введение
1. Суть явления голографии
2. Голографирование. Восстановление изображения предмета
3. Голограммы. Общие сведения
4. Некоторые виды голограмм
1. Мультикомплексные голограммы
2. Пространственное мультиплексирование
3. Составные изображения
4. Голограммы, записанные с помощью сканирующего источника света
5. Сканирующий опорный пучок
6. Цветные голограммы
7. Голограммы, восстанавливаемые в белом свете
5. Трехмерная фотография
6. Применение голографии в технологии и оптотехнике
7. Неоптическая голография
1. Сканирование звукового поля
2. Фотография
3. Деформация поверхности жидкости под действием звукового давления
4. Объемная голограмма
8. Виды применения голографии
1. Голографическое хранение данных
2. Изобразительная голография
3. Криминалистическая голография
4. Голографическая интерферометрия
9. Голографические диски HVD
1. Общие сведения о голографических дисках
2. Технология хранения информации
3. Запись и считывание голограммы оптического диска
4. Отличие метода поляризованной коллинеарной голографии (Optware) от классической технологии (Inphase Technologies)
5. Компоненты и материалы (Optware)
Заключение
Литература

Содержимое работы - 1 файл

Министерство Образования и Молодежи Республики Молдова.doc

— 159.50 Кб (Скачать файл)

     4 Синтез голограмм  на ЭВМ 

     В этом случае в ЭВМ вводятся параметры, описывающие объект, и она вычисляет объектную волну. Опорная волна может складываться с объектной математически, и результат, получаемый на графопостроителе, должен быть аналогом оптической записи. В общем случае этого не делается, но голограмма, синтезированная на ЭВМ, будучи воспроизведенной на графопостроителе, представляет собой систему прозрачных апертур, закодированную таким образом, чтобы дать искомую волну изображения. 

     5 Конфигурация 

     Под конфигурацией мы понимаем все то, что связано с положением объекта, применением линз для формирования изображения или выполнения преобразования Фурье над объектной волной, структурой опорной волны, с формой поверхности и способами экспонирования голографического материала. 

     6 Свойства объектной волны 

     В общем случае, если объект расположен близко к голографическому записывающему  устройству, регистрируется то, что  называется голограммой Френеля. Если объект мал и находится всего  лишь в нескольких сантиметрах от голограммы, мы все же получим то, что называется голограммой Фраунгофера.

     Если  объект располагается очень близко к голограмме или изображение  объекта формируется в непосредственной близости голографическому записывающему  устройству, мы получаем голограмму сфокусированного изображения. Поскольку в этом случае восстановленное изображение располагается вблизи от голограммы, лучи света разных длин волн не смогут разойтись на большой угол, прежде чем будет сформировано изображение. Это означает, что для освещения голограммы можно применять источник, имеющий широкий спектр излучения. Это свойство делает голограмму сфокусированного изображения особенно полезной при использовании в дисплеях. Если, для того чтобы в плоскости регистрации голограммы получить двумерный пространственный Фурье-образ распределения амплитуд и фаз объектной волны, используется линза, то получаем голограмму Фурье. В случае когда рассеивающий объект и точечный опорный источник находятся на одинаковом расстоянии регистрирующей среды, мы имеем голограмму квази–Фурье. 

     7 Свойства опорной волны 

     Влияние формы опорной волны гораздо  сильнее, чем это кажется на первый взгляд. От опорной волны зависят  положение и размер изображения, его поле зрения и разрешение; она  определяет разрешение, которым должен обладать регистрирующий материал.

     Если  точечный источник опорной волны  расположен на том же расстоянии от голограммы, что и объект, то голограмма имеет почти те же свойства, что  и голограмма Фурье. Поэтому такую  голограмму можно назвать голограммой  квази-Фурье. От положения точечного источника опорной волны зависят и другие параметры. Конечное разрешение записывающего устройства накладывает ограничения на поле зрения изображения, ёго разрешение или на то и другое вместе. Выбирая положение точечного источника опорной волны, можно найти компромиссное решение между пределами, ограничивающими поле зрения и разрешение изображения. Если источник находится в области объекта, то мы получаем максимальное разрешение ценой ограниченного поля зрения. Если же источник расположен на бесконечности (плоская опорная волна), то „мы имеем максимальное поле зрения и невысокое разрешение. Если точечный источник опорной волны поместить между объектом и бесконечностью вдали от голограммы, то мы получим промежуточные значения поля зрения и разрешения изображения 

     8 Регистрирующий материал  и конфигурация 

     В качестве регистрирующего материала, как правило, употребляется плоская  фотографическая эмульсия, которая  экспонируется одновременно и целиком.

     Регистрирующий  материал может быть термопластиком, тогда говорят о термопластической голограмме. Записываются фотохромные и бихромат-желатинные голограммы. Почти любая среда, способная записать изображения, может применяться для регистрации голограммы. Если регистрирующий материал отличается от фотоэмульсии, то его название используется для того, чтобы определять тип голограммы. 

 

      4. Некоторые виды  голограмм 

     1 Мультикомплексные  голограммы 

     Мультикомплексной называют такую голограмму, на которой  одновременно записано много изображений, либо раздельно записаны отдельные части одного изображения, либо единственное изображение записано несколько раз. 

     2 Пространственное  мультиплексирование 

     При решении задачи хранения данных для  записи многих голаграмм можно использовать единственную фотопластинку или  какой-либо иной материал, причем каждая голограмма может независимо восстанавливать изображения записанных на ней данных. При этом голограммы могут образовывать решетку типа шахматного поля, а для считывания изображения с каждой голограммы лазерный луч сканирует по решетке.

     Встречается и другой способ пространственного разделения голограммы, когда одна и та же объектная волна или волна от одного и того же объекта, но с разных ракурсов записывается на голограмме в виде полос. В первом случае полосковая голограмма просто повторно записывается много раз, так чтобы можно было восстановить изображение со всей голограммы. Второй случай имеет место при записи синтезированных голограмм для целей отображения информации. 

     3 Составные изображения 

     Под составными голограммами мы имеем в  виду голограммы, которые формируют изображения, состоящие из отдельных частей каждая из которых была записана самостоятельно

     4 Голограммы, записанные  с помощью сканирующего  источника света 

     Голограммы, записанные с помощью сканирующего источника— это такие голограммы, при регистрации которых использован; либо сканирующий пучок света для освещения объекта, либо сканирующий опорный пучок для освещения голограммы.

     Сканирующий объектный пучок,

     Иногда  сечение освещающего объект пучка  уменьшается в такой степени, что он не может больше освещать весь объект одновремено, а должен сканировать по объекту. В результате формируется многоэкспозиционная голограмма, в которой изображение каждго из освещаемых пучком участков объекта регистрируется отдельно.

     Если  размеры объекта велики, можно сузить освещающий объект пучок и заставить его сканировать по объекту, так чтобы на голограмму падала объектная волна большей яркости. Это позволит уменьшить время экспозиции, необходимое для записи голограммы рассматриваемой части объекта. Полную экспозицию уменьшить нельзя.

     Недостатком использования голографической  системы со сканированием помимо необходимости использовать более  сложное оборудование является также  уменьшение дифракционной эффективности  голограммы. Это уменьшение связано  с увеличением: фоновой экспозиции, которая возникает при записи с многократной экспозицией. 

     5 Сканирующий опорный  пучок 

     В случае сканирования опорным пучком объект освещается целиком, но при этом опорный пучок сканирует по голограмме. Следовательно, можно увеличить полную интенсивность света, падающего на часть голограммы, и уменьшить время экспозиции для части голограммы. Это позволяет голографировать объекты, имеющие движение в ограниченных пределах. Однако такой мет приводит к уменьшению дифракционной эффективности, что объясняется увеличением энергии опорного пучка по отношению к объектному 

     6 Цветные голограммы 

     Цветными  называют голограммы, способные воспроизводить цветные изображения. В сущности, цветные голограммы — это мультиплексные голограммы, восстанавливающие перекрывающиеся изображения, каждое в своем цвете. Как и в случае мультиплексных голограмм, возникают различные проблемы в зависимости от того используются ли тонкие, т. е. поверхностные, голограммы или регистрирующая среда имеет заметную толщину. Голограммы, записанные на тонком материале, восстанавливают многократно повторяющиеся изображения, которые соответствуют многим дифракционным порядкам. Голограммы, записанные в толстой среде из-за усадки или набухания эмульсии могут не восстанавливаться освещением с исходной длиной волны. Если, например, рассматривать красные и белые изображения, то в противоположность черным и белым необходимо учитывать эффекты дисперсии. В случае голограммы сфокусированного изображения, поскольку расстояние между голограммой и телеграфируемым изображением; оказывается более коротким, таких проблем возникает меньше. 

     7 Голограммы, восстанавливаемые  в белом свете 

     Голограмма  представляет собой закодированную дифракционную решетку.

     Следовательно, когда голограмма освещается белым светом, волны с большими длинами волн отклоняются сильнее от оси освещающей голограмму волны, чем волны с более короткими длинами волн. В результате этого восстановленное изображение; смазывается. Такой эффект можно отчасти скомпенсировать, используя дифракционную решетку с шагом штриха, равным среднему периоду интерференционных полос на голограмме. Изложенные выше соображения применимы к тонким голограммам. Объемные голограммы обладают избирательностью по отношению к длине волны и будут отражать или пропускать только узкую полосу длин волн, обусловленную эффектом Брэгга. 

 

      5. Трехмерная фотография 

     Голограммы  могут регистрировать излучение, рассеянное объектом. На рисунке показаны схемы регистрации голограмм с углом охвата 360°. Однако можно регистрировать голограмму с таким охватом и при обычном (не всестороннем) освещении. Для этого необходимо сделать много экспозиций, поворачивая каждый раз объект на небольшой угол и засвечивая при каждой экспозиции узкую вертикальную полоску голограммы. 

     Трехмерные свойства восстановленных с помощью голограмм изображений могут быть использованы в рекламе, лекционных демонстрациях, при конструировании художественных панорам, создании копий произведений искусств, регистрации голографических портретов. При получении голографического портрета человека необходимы столь краткие выдержки, чтобы структура голограммы не была размыта вследствие смещений освещенной поверхности. Это требует повышения мощности лазера, используемого для получения голограммы. При этом, однако, не следует забывать о предельно допустимой концентрации энергии на поверхности сетчатки человеческого глаза. Выход из положения заключается в освещении лица с помощью рассеивающих экранов большой площади.  

 

      6. Применение голографии  в технологии и  оптотехнике 

     В ряде технологических процессов  можно использовать образуемые голограммами действительные изображения. При просвечивании  голограмм мощным лазером можно  наносить на обрабатываемые поверхности  сложные узоры. В частности, голограммы уже применялись для бесконтактного нанесения микроэлектронных схем. Основные преимущества голографических методов перед обычными – контактными или проекционными – достижение практически безаберрационного изображения на большом поле. Предел разрешения голограммы может достигать долей длины световой волны. На изображение практически не влияют пылинки, осевшие на голограмму, царапины и другие дефекты, в то время как для контактных или проекционных фотошаблонов это приводит к браку.

     Другое  применение голограммы в технологии – использование ее в качестве линзы. Фокусирующие свойства зонных решеток известны давно. Однако применение решеток ограничивалось трудностями их изготовления. Голографические зонные решетки – голограммы точечного источника – просты в изготовлении и несомненно будут полезны в лазерной технологии. Например, с помощью голографических линз получали отверстия диаметром до 14 мкм в танталовой пленке, нанесенной на стекло. Голографические решетки совсем не имеют ошибок, свойственных обычным решеткам, нарезанным на делительной машине.  

 

      7. Неоптическая голография 

     С помощью голографии успешно решается проблема визуализации акустических полей. Это имеет большое прикладное значение. Возможные применения звуковой голографии – дефектоскопия, изучение рельефа морского дня, звуколокация, звуконавигация, поиск полезных ископаемых, исследование структуры земной коры и т.д.

     Особое  значение имеет ультразвуковая голография для медицинской диагностики.

     Регистрация звуковых голограмм производится таким  образом, чтобы запись допускала оптическое восстановление. Для этого используются следующие методы: 

     
  1. Сканирование  звукового поля
 

     Сигнал  от приемника ультразвука (микрофона, пьезоэлемента и т.д.) модулирует световой поток, образующий оптическую голограмму. Возможны различные модификации такой схемы. На рисунке изображен вариант такой схемы, в которой сигнал сканирующего приемника управляет яркостью укрепленной на нем точечной лампочки. В других схемах сигнал с приемника подается на электроннолучевую трубку. Развертка производится синхронно с перемещением датчика, и голограмма фотографируется с экрана трубки. Возможны как однолучевые, так и двулучевые варианты звуковой голографии. Впрочем, роль опорного звукового луча может играть электрический сигнал с генератора звука, добавляемый к сигналу датчика. 

Информация о работе Голография