Автор работы: Пользователь скрыл имя, 18 Марта 2012 в 17:45, реферат
Цель науки – вскрывать объективные законы явлений, давать им объяснение.
Задачи науки – найти и исследовать объективные законы, скрытые от поверхностного взгляда, и вооружить знанием этих законов людей для их практической деятельности.
Введение.
Электрическая энергия долгое
время была лишь объектом экспериментов
и не имела практического
Начало XX века было отмечено
так называемой «войной токов» —
противостоянием промышленных производителей
постоянного и переменного
Наука в каждый рассматриваемый момент времени представляет собой итог – совокупность знаний о природе, обществе, мышлении, накопленных в ходе общественно-исторической жизни людей.
Цель науки – вскрывать объективные законы явлений, давать им объяснение.
Задачи науки – найти и исследовать объективные законы, скрытые от поверхностного взгляда, и вооружить знанием этих законов людей для их практической деятельности.
Прогноз дальнейшего – ведущая роль в дальнейшем познании природы принадлежит синтезу знаний, интеграции наук, в центре которых будет находиться человек.
Наука – многоаспектный, многогранный и сложно устроенный феномен. Наука – это и экспериментальные средства, необходимые для изучения явлений – в их число входят приборы и установки, с помощью которых эти явления фиксируются и воспроизводятся; это и методы, посредством которых выделяются и познаются предметы исследования; это и люди, занятые научными исследованиями; это и системы знаний, зафиксированные с помощью текстов и т. п.
Общей основой перечисленных явлений служит технология человеческой деятельности по производству знаний, то есть наука – это определенная человеческая деятельность, которая направлена на получение знаний.
Развитие науки и техники всегда происходит в конкретных исторических и культурных условиях, определяемых прежде всего производительными силами общества, способом производства. Достижения науки и технический прогресс одновременно с этим способствуют эволюции общества, генерируя и определяя уровень производительных сил.
Глава 1.Основоположники электроэнергетики.
Сначала наука многое взяла у мастеров – инженеров эпохи Возрождения, затем, в XIX-XX в.в. инженерная деятельность стала строиться уже в соответствии с наукой. Специализация и профессионализация науки и техники привели к технизации науки и гуманизации техники.
Вся история человечества
показывает, что наука развивается
под влиянием практических потребностей
и, в первую очередь, потребностей производства.
Однако потребности производства не
определяют всей сложной динамики формирования
знаний, создания новых идей, теорий,
выводов. Здесь действуют свои собственные
законы. Например, история развития
естественных наук дает много примеров
научных открытий, которые не порождались
непосредственно запросами
• открытие электричества,
• дифракции,
• магнетизма,
• поляризации,
• периодической системы элементов и многое другое.
Научные фантасты, художники,
писатели иногда способны вторгнуться
в неведомое будущее и
Англичанин Роджер Бэкон в XIII в. (примерно 1240-е гг.) занимался языками, математикой, астрономией, физикой, химией и сделал многочисленные важные открытия. Он писал о колесницах, двигающихся с невероятной быстротой без помощи животных, о летающих машинах, о свойствах вогнутых и выпуклых стекол для глаз (очки), создал теорию телескопа и многое другое. Один из величайших умов человечества!
В XVI веке (1560-е гг.) Френсис Бэкон (однофамилец Роджера) – создал одно из блестящих творений человеческого разума – произведение «Новая Атлантида», в котором он изложил проект государственной организации науки, описал основы логики обновления науки, указал на возможность полезного применения наблюдаемых в природе явлений, предсказал создание подводных лодок, самолетов, кино, радио, телевидения, бионики, термоядерного реактора и многое другое.
В романе русского фантаста Н. Шелонского «В мире будущего» (1892 г.) идет речь о превращениях элементов, о синтетических материалах, о передаче мыслей на расстоянии, об антигравитации и многом другом.
А. Толстой в произведении «Гиперболоид инженера Гарина» подробно описал проект лазера.
Рассказ И. Ефремова «Тени минувшего» (1945 г.) натолкнул ученого Ю. Денисюка на открытие объемной голографии.
Из 86 предсказаний писателя-фантаста Г. Уэллса сбылось более 30-ти, а у фантастов Жюля Верна и А. Беляева сбылось 90 % прогнозов.
Далее рассмотрим некоторые законы развития науки. Первый закон. Он называется законом относительной самостоятельности развития науки.
Такая относительная
Второй закон. Следующий
закон отражает такие явления, как
критика и борьба мнений в науке.
То есть развитие науки происходит
на основе борьбы новых и старых
идей. Без учета эмоциональных
дискуссий нового знания со старым,
без правильного понимания
Третий закон. Этот закон выражает взаимодействие наук и имеет сейчас особенно важное значение для понимания происходящих процессов научно-технического прогресса. Наука представляет собой единое целое. Существующее разделение науки на отдельные области обусловлено различием природы вещей и закономерностей, которым эти вещи подчиняются в процессе движения и развития. Различные области науки развиваются, взаимодействуя друг с другом разными путями:
• через использование знаний, полученных другими науками;
• посредством использования методов изучения других наук;
• через технику и производство;
• через изучение общих
свойств различных видов
Четвертый закон характеризует
процесс математизации
Пятый закон относится к дифференциации и интеграции наук, которые неизменно присутствуют в развитии современного естествознания. Процесс дифференциации – перерождение различных ветвей науки в самостоятельные научные дисциплины. Вместе с тем этот процесс сопряжен с процессом интеграции, связывающим разные отрасли естествознания, так как наблюдается бурное развитие пограничных наук: генная инженерия, молекулярная геология, биогеохимия, инженерная психология и др.
Шестой закон –
Седьмой закон, открытый Ф. Энгельсом, – ускоренное развитие науки – действует и сейчас. Достижения XIX века во много раз превосходят достижения XVIII века, а достижения XX века (даже второй его половины) превосходят достижения предыдущих времен.
Восьмой закон свидетельствует
о неизбежности научных революций.
Анализ истории развития естествознания
показывает, что оно развивалось
очень неравномерно. Периоды относительной
стабильности, постепенного накопления
знаний неизбежно с течением времени
сменялись более
Девятый закон описывает
усиление связи науки с производством,
что в итоге привело к
Наука есть создание жизни. Из окружающей жизни научная мысль человека берет приводимый в форме научной истины материал. Наука есть проявление действия в человеческом обществе совокупной человеческой мысли.
Материальная жизнь
Энергия (гр. energeia – деятельность) – способность тел (существ) совершать работу. Это действие, общая количественная мера различных форм движения материи. Энергия связывает воедино все явления природы.
Энергетика, энергетическая
наука – это наука о
Электроэнергетика в целом рассматривается как сложное техническое образование, тесно взаимодействующее с топливным хозяйством и основными отраслями добывающей и перерабатывающей промышленности, транспортом, сельским хозяйством и т. п.
Электрическая энергия является вторичной энергией и не заменяет первичную, например, тепловую, гидравлическую, ветровую, термоядерную, солнечную, приливную, ядерную, но в то же время стимулирует их развитие.
Электроэнергетика – это ведущая отрасль энергетики. Применение электричества, использование электрической энергии – одно из величайших открытий и достижений XIX века. Этому предшествовали усилия многих и многих людей. Сейчас электрическая энергия является самым удобным видом энергии.
Энергетической системой
электроэнергетики называют совокупность
электрических станций, электрических
и тепловых сетей, соединённых между
собой и связанных общностью
режима в непрерывном процессе производства,
преобразования и распределения
электрической энергии и
Энергетика является определяющим
фактором и для экономики, и для
экологии. От нее зависит экономический
потенциал государства и