Автор работы: Пользователь скрыл имя, 27 Декабря 2010 в 14:35, курсовая работа
Инвестиционная деятельность представляет собой один из наиболее важных аспектов функционирования любой коммерческой организации. Причинами, обусловливающими необходимость инвестиций, являются обновление имеющейся материально-технической базы, наращивание объемов производства, освоение новых видов деятельности.
Введение…………………………………………………………………………………2
1.Основные принципы анализа капиталовложений…………………………………..3
2. Анализ эффективности инвестиционных проектов………………………………..6
1.2. Чистый приведенный доход……………………………………………………….6
2.2 Рентабельность капиталовложений………………………………………………..9
3.2. Внутренняя норма прибыли……………………………………………………....10
4.2. Учет влияния инфляции и риска………………………………………………...15
5.2. Сравнительная характеристика критериев NPV и IRR…………………………20
6.2. Сравнительный анализ проектов различной продолжительности……………..27
Заключение……………………………………………………………………………..30
Список литературы…………………………………………………………………….32
3. Поскольку зависимость NPV от ставки дисконтирования r нелинейна, значение NPV может существенно зависеть от r, причем степень этой зависимости различна и определяется динамикой элементов денежного потока.
Рассмотрим два независимых проекта (млн руб.):
А: -200, 150, 80, 15, 15, 10;
B: -200, 20, 50, 50, 90, 110.
Требуется ранжировать их по степени приоритетности при условии, что цена источника финансирования весьма неопределенна и, предположительно, может варьировать в интервале от 5% до 20%.
В таблице 5 приведены результаты расчетов для возможных ситуаций.
|
Таблица 5
Из приведенных расчетов видно, что проекты А и B неодинаково реагируют на изменение значения коэффициента дисконтирования: при переходе от 10 к 15% NPV проекта В снижается на 98%, тогда как NPV проекта А - на 52,6%. Ясна и причина такой неодинаковости: проект А имеет убывающий денежный поток,
а В - нарастающий. Так как интенсивность возмещения инвестиций в проекте А существенно выше, чем в проекте В, он в меньшей степени реагирует на негативное увеличение значения коэффициента дисконтирования. Что касается проектов типа В, то они являются более рисковаными, о чем можно судить и по значению IRR.
4. Для проектов классического характера критерий IRR показывает лишь максимальный уровень затрат по проекту. В частности, если цена инвестиций в оба альтернативных проекта меньше, чем значения IRR для них, выбор может быть сделан лишь с помощью дополнительных критериев. Более того, критерий IRR не позволяет различать ситуации, когда цена капитала меняется. Рассмотрим соответствующий пример.
Пример I
В таблице 6 приведены исходные данные по двум альтернативным проектам (в млн руб.). Необходимо выбрать один из них при условии, что цена капитала, предназначенного для инвестирования, составляет а) 5%; б) 15%.
|
Таблица
6
Если
исходить из критерия IRR, то оба проекта
и в ситуации а), и в ситуации б) являются
приемлемыми и равноправными. Но так ли
это? Построим графики функции NPV = f(r) для
обоих проектов.
NPV
Рисунок
2. Нахождение точки Фишера
Точка пересечения двух графиков (r = 9,82%), показывающая значение коэффициента дисконтирования, при котором оба проекта имеют одинаковый NPV, называется точкой Фишера. Она примечательна тем, что служит пограничной точкой, разделяющей ситуации, которые "улавливаются" критерием NPV и не "улавливаются" критерием IRR.
В данном примере критерий IRR не только не может расставить приоритеты между проектами, но и не показывает различия между ситуациями а) и б). Напротив, критерий NPV позволяет расставить приоритеты в любой ситуации. Более того, он показывает, что ситуации а) и б) принципиально различаются между собой. А именно, в случае (а) следует принять проект А, поскольку он имеет больший NPV, в случае б) следует отдать предпочтение проекту В. Отметим, что точка Фишера для потоков А и В может быть найдена как IRR приростного потока (А-В) или, что то же самое, (В - А).
5. Одним из существенных недостатков критерия IRR является то, что в отличие от критерия NPV он не обладает свойством
аддитивности, т.е. для двух инвестиционных проектов А и В,
которые могут быть осуществлены одновременно:
NPV (A+B) = NPV (A) + NPV (B),
но IRR (A + В) № IRR (A) + IRR(B).
Пример J
Проанализируем целесообразность инвестирования в проекты А, В, С при условии, что проекты В и С являются альтернативными, а проект А - независимым. Цена инвестированного капитала составляет 10%.
Исходя из условия примера необходимо проанализировать несколько сценариев:
а) целесообразность принятия каждого из проектов в отдельности (А, В или С);
б) целесообразность принятия комбинации проектов (А+В) и (А+С).
Результаты анализа приведены в таблице 7.
(млн руб.)
|
Таблица 7. Анализ комбинации инвестиционных проектов
Из приведенных расчетов видно, что все три исходных проекта
являются приемлемыми, поэтому необходимо проанализировать возможные их комбинации. По критерию IRR относительно лучшей является комбинация проектов А и С, однако такой вывод не вполне корректен, поскольку резерв безопасности в обоих случаях весьма высок, но другая комбинация дает большее
возможное увеличение капитала компании.
6. В принципе не исключена ситуация, когда критерий IRR не с чем сравнивать. Например, нет основания использовать в анализе постоянную цену капитала. Если источник финансирования - банковская ссуда с фиксированной процентной ставкой, цена капитала не меняется, однако чаще всего проект финансируется из различных источников, поэтому для оценки используется средневзвешенная цена капитала фирмы, значение которой может варьировать в зависимости, в частности, от общеэкономической ситуации, текущих прибылей и т.п.
7. Критерий
IRR совершенно непригоден для анализа
неординарных инвестиционных потоков
(название условное). В этом случае возникает
как множественность значений IRR, так и
неочевидность экономической интерпретации
возникающих соотношений между показателем
IRR и ценой капитала. Возможны также ситуации,
когда положительного значения IRR попросту
не существует.
6.2. Сравнительный анализ проектов различной
продолжительности.
Довольно часто в инвестиционной практике возникает потребность в сравнении проектов различной продолжительности.
Пусть проекты А и Б рассчитаны соответственно на i и j лет. В этом случае рекомендуется:
найти наименьшее общее кратное сроков действия проектов - N;
рассматривая каждый из проектов как повторяющийся, рассчитать с учетом фактора времени суммарный NPV проектов А и В,
реализуемых необходимое число раз в течение периода N;
выбрать тот проект из исходных, для которого суммарный NPV повторяющегося потока имеет наибольшее значение.
Суммарный NPV повторяющегося потока находится по формуле:
NPV (i, n) = NPV(i) (1 + ------ + ------ + ------ +...+--------),
где NPV (i) - чистый приведенный доход исходного проекта;
i- продолжительность этого проекта;
r - коэффициент дисконтирования в долях единицы;
N - наименьшее общее кратное;
n - число повторений исходного проекта (оно характеризует число слагаемых в скобках).
Пример K
В каждой из двух приведенных ниже ситуаций требуется выбрать наиболее предпочтительный проект (в млн руб.), если цена капитала составляет 10%:
а) проект А: -100, 50, 70; проект В: -100, 30, 40, 60;
б) проект С: -100, 50, 72; проект В: -100, 30, 40, 60.
Если рассчитать NPV для проектов А, В и С, то они составят
соответственно: 3,30 млн руб., 5,4 млн руб., 4,96 млн руб.
Непосредственному сравнению эти данные не поддаются, поэтому необходимо рассчитать NPV приведенных потоков. В обоих вариантах наименьшее общее кратное равно 6. В течение этого периода проекты А и С могут быть повторены трижды, а проект В - дважды.
В случае трехкратного повторения проекта А суммарный NPV равен 8,28 млн руб.: NPV = 3,30 + 3,30 / (1+0,1)2+3,30 / (1+0,1)4 = 3,30 + 2,73 +2,25 = 8,28,
где 3,30 - приведенный доход 1-ой реализации проекта А;
2,73 - приведенный доход 2-ой реализации проекта А;
2,25 - приведенный доход 3-ей реализации проекта А.
Поскольку суммарный NPV в случае двукратной реализации проекта В больше (9,46 млн руб.), проект В является предпочтительным.
Если сделать аналогичные расчеты для варианта (б), получим, что суммарный NPV в случае трехкратного повторения проекта С составит 12,45 млн руб. (4,96 + 4,10 + 3,39). Таким образом, в этом варианте предпочтительным является проект С.
Информация о работе Планирование и анализ инвестиционных проектов