Важнейшие достижения естествознания 19 века

Автор работы: Пользователь скрыл имя, 24 Декабря 2011 в 17:55, курсовая работа

Краткое описание

Данный исторический период в развитии характеризуется стихийным проникновением диалектики в естествознание. Развитие общества характеризуется победой капиталистического способа производственных отношений. Бурное развитие промышленности, машиностроения, химической промышленности, металлургии, горного дела, электро- и теплотехники, строительство железных дорог и т.д. – это все стимулировало развитие науки, новых форм ее организации. Резко возрастают потребности общества в энергии и как следствие особенно развиваются физика и химия, науки, изучающие взаимное превращение форм энергии и веществ.

Содержание работы

Введение 3
Основные концепции физики XIX века 4
Волновая концепция света О.Френеля 4
Концепции классической электродинамики 5
Электромагнитное поле Максвелла и эфир 6
Концепции классической термодинамики 7
Возникновение предпосылок атомной и ядерной физики 11
Химия XIX столетия 14
Атомы 14
Органическая химия 15
Строение молекул 16
Периодическая таблица 18
Физическая химия 19
Синтетическая органическая химия 20
Неорганическая химия 21
Достижения биологии XIX века 23
Клеточная теория 23
Эволюционная теория Ч.Дарвина 24
Микробиология 25
Генетика 26
Заключение 27
Список литературы 28

Содержимое работы - 1 файл

важнейшие достижения естествознания 19 века реферат.doc

— 245.50 Кб (Скачать файл)

     Содержание 

 

Введение

 

           Наука никогда не стоит на  месте, научное познание постоянно  развивается. Тем не менее, XIX век  нельзя не выделить в истории  развития естествознания. XIX век  был веком перелома. В нем уходящая  культура, уходящее мировоззрение,  носившее метафизический характер, тесно переплетены с тем, что идет на смену. Недаром это время называют не только «веком уходящего дворянства», но и веком промышленной революции, в корне изменившей всю систему человеческих ценностей.

           Данный исторический период в развитии характеризуется стихийным проникновением диалектики в естествознание. Развитие общества характеризуется победой капиталистического способа производственных отношений. Бурное развитие промышленности, машиностроения, химической промышленности, металлургии, горного дела, электро- и теплотехники, строительство железных дорог и т.д. – это все стимулировало развитие науки, новых форм ее организации. Резко возрастают потребности общества в энергии и как следствие особенно развиваются физика и химия, науки, изучающие взаимное превращение форм энергии и веществ.

           Социально – экономические и  политические условия развития  науки в XIX веке в разных  странах не были одинаковыми.

           Известный историк науки Дж. Мерц, характеризуя специфику развития  науки этого периода, отмечал, что «наибольшее число совершенных по форме и содержанию трудов, ставших классическими для всех времен, выполнено, вероятно, во Франции; наибольшее количество научных работ было, вероятно, выполнено в Германии; наибольшая доля идей, которые оплодотворяли науку на протяжении века, принадлежит, вероятно, Англии».1 Но общей для всех стран характерной чертой развития науки в XIX веке можно считать усиление ее взаимодействия с техникой и экономикой.   

          Вообще, в XIX веке было сделано колоссальное число открытий, которые как бы заложили фундамент для последующих (уже в XX веке) коренных изменений в науке.

          Наука вышла на новый этап: теперь внимание уделялось и  теоретической стороне, и эксперименту, ученые поняли, что одно невозможно без другого. Вторая половина XIX века отмечается важными изменениями в организации подготовки ученых. В это время сначала в Европе, а затем в Америке создаются лаборатории. В некоторых из лабораторий зарождаются научные школы.

           Без открытий и достижений XIX века сложившаяся картина мира была бы совсем другой.

           В своем реферате я расскажу  лишь о важнейших и самых  значительных достижениях естествознания XIX века.

 

     

Основные  концепции физики XIX века

 

     Физика XIX века считается классической. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию. И хотя природа тяготения оставалась не выясненной, его действия можно было рассчитать. Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Складывалось впечатление, что знание физики близко к своему полному завершению - столь мощную силу демонстрировал фундамент классической физики, несмотря на то, что в ее отдельных областях гнездились остатки старых метафизических концепций. Но постепенно последние сдают свои позиции: сходят с арены теория флюидов, теория теплорода и т.д.  Проникновение физических знаний в промышленность, технику приводит к появлению прикладной физики, а исследования в ее области значительно расширяли фактический материал, требовавший теоретической интерпретации. В конце концов неспособность классической теории объяснить новые факты приводит на рубеже XIX и XX веков к научной революции в физике.  

     Волновая  концепция света  О.Френеля 

     Сформировавшиеся  в предшествующее столетие корпускулярная и волновая концепция света в XIX веке продолжили ожесточенную борьбу. Первая опиралась на авторитет Ньютона, вторая - на авторитет Гука, Гюйгенса, Эйлера, Ломоносова. Сторонники корпускулярной концепции надеялись объяснить с ее позиций затруднения с объяснением явлений дифракции и интерференции. Т.Юнг дал это объяснение с позиций волновой концепции. Юнг сделал вывод о том, что излучаемый свет состоит из волнообразных движений светоносного эфира. Это дало возможность все разнообразие цветов свести к колебательным движениям эфира, а различие цветов объяснить различием частот колебаний эфира, а также сформулировать принцип интерференции.

     Прямолинейное распространение света было наиболее важным аргументом в пользу корпускулярной теории. Огюст Френель сделал новый существенный шаг в развитии волновой теории.  (Идея интерференции вообще оказалась столь плодотворной, что при встрече с неизвестным видом излучения всегда стараются получить интерференцию. И если это удается, то тем самым доказывается его волновой характер).2

     Связав  принцип Гюйгенса, (согласно которому молекулы тела, приведенные в колебание падающим светом становятся центрами испускания новых волн) с принципом интерференции, (согласно которому налагающиеся волны, в противоположность корпускулярным лучам, не обязательно усиливаются, а могут и ослабляться до полного уничтожения), Френель дал объяснение прямолинейному распространению света, показав, что лучи, поляризованные перпендикулярно друг к другу, не интерферируются. В опытах по дифракции света он установил, что дифракционные полосы появляются вследствие интерференции лучей. Принцип интерференции позволил Френелю законы отражения и преломления объяснить взаимным погашением световых колебаний во всех направлениях, за исключением тех. которые удовлетворяют закону отражения. Френелю удалось экспериментально доказать, что световые лучи могут воздействовать друг на друга, ослабляться и даже почти полностью погашаться в случаях согласных колебаний, что и позволило ему дать объяснение явлению дифракции. Френель доказал, что свет является поперечным волновым движением. Он объяснил явление поляризации света в экспериментальных исследованиях отражения и преломления света от поверхности прозрачных веществ. Им было установлено, что отражение плоско-поляризованного света от поверхности прозрачного тела сопровождается поворотом плоскости поляризации в тех случаях, когда эта плоскость не совпадает с плоскостью падения или не перпендикулярна к ней. Развивая идеи Гюйгенса о распространении волн в кристаллах, Френель заложил основы кристаллооптики.

     Таким образом, борьба волновой и корпускулярной концепции света в первой половине XIX века завершается победой волновой концепции - было установлено, что свет является поперечным волновым движением. Решающим вкладом  в эту победу и явилось объяснение с помощью волновой концепции явлений дифракции и интерференции света.  

     Концепции классической электродинамики 

     Классическая  электродинамика, представляющая собой  теорию электромагнитных процессов  в различных средах и вакууме, охватывает огромную совокупность явлений, в которых главная роль принадлежит  взаимодействиям между заряженными частицами, которые осуществляются посредством электромагнитного поля. Разделом электродинамики, изучающим взаимодействия и электрические поля покоящихся электрических зарядов, является электростатика.

     Успехи  в области электростатики, выразившиеся в установлении количественного закона электрических взаимодействий, способствовали не только накоплению экспериментальных данных в области электростатических явлений и совершенствованию электростатических машин, но и созданию математической теории электро- и магнитостатистических взаимодействий. Открытие Л.Гальвани "животного электричества", создание А.Вольта первого генератора электрического тока ("вольтова столба"), осуществление первого описания замкнутой цепи электрического тока, открытие В.В.Петровым электрической дуги, открытие Г.Дэви и М.Фарадея химического действия электрического тока, теоретические работы по электро- и магнитостатике С.Пуассона и Д.Грина были завершающими успехами в области концепции электрической жидкости, считавшейся в начале XIX века основой электростатики, подобно тому, как концепция магнитной жидкости считалась основой магнитостатики. В дальнейшем главным направлением в данной области становится электромагнетизм.

     В 1820 г. Х.Эрстедом было открыто магнитное  действие электрического тока - вокруг проволоки с электрическим током было обнаружено магнитное поле. Таким образом, была доказана связь электричества и магнетизма. Незамедлительно последовал новый каскад открытий: в 1821 году М.Фарадей изобрел первый электродвигатель, в том же году Зеебек изобрел термоэлемент, а в 1827 году Ом опубликовал свой закон: «сила тока прямо пропорциональна напряжению между концами проводника». А.Ампер, основываясь на единстве электрических и магнитных явлений, разработал первую теорию магнетизма, заложив тем самым основы электродинамики. Он различал понятия электрического тока и электрического напряжения. Основными понятиями его концепции были "электрический ток", "электрическая цепь". Под электрическим током Ампер понимал непрестанно чередующиеся внутри проводника процессы соединения и разделения противоположно заряженных частиц электричества. (Наименование единицы силы тока носит имя Ампера.) Им обосновано направление движения тока - направление положительного заряда электричества, а также установлен закон механического взаимодействия двух токов, текущих в малых отрезках проводников, находящихся на некотором расстоянии друг от друга. Из данного закона следовало, что параллельные проводники с токами, текущими в одном направлении, притягиваются, а в противоположных направлениях - отталкиваются. Из представления о магните как о совокупности электрических токов, расположенных в плоскостях, перпендикулярных линии, соединяющей полюсы магнита, вытекал естественный вывод о том, что соленоид эквивалентен магниту. Революционный смысл этого вывода был очевиден: для объяснения явления магнетизма больше не требовалось наличия "магнитной жидкости" - все явление магнетизма оказалось возможным свести к электродинамическим взаимодействиям.

     Следующим шагом в развитии электродинамики было открытие М.Фарадеем явления электромагнитной индукции - возбуждения переменным магнитным полем электродвижущей силы в проводниках, - ставшей основой электротехники. Важным результатом его исследований явилось также обоснование того, что отдельные виды электричества тождественны по своей природе, независимо от их источника. Пытаясь объяснить явление электромагнитной индукции на основе концепции дальнодействия, но встретившись с затруднениями, он высказал предположение об осуществлении электромагнитных взаимодействий по средством электромагнитного поля, т.е. на основе концепции близкодействия. Это положило начало формированию концепции электромагнитного поля, оформленную Д.Максвеллом.  

     Электромагнитное  поле Максвелла и  эфир 

     Теория Ньютона успешно объяснила движение планет вокруг Солнца под влиянием силы притяжения, но не смогла верно объяснить движение электрически заряженных частиц, которые взаимодействуют друг с другом через пустое пространство под влиянием электрических и магнитных. Вместе с тем между гравитационными и электромагнитными силами есть различия: электрический заряд имеет лишь некоторые частицы, а гравитацией обладают все формы вещества и энергии; электрические силы бывают положительными и отрицательными (причем частицы с разным зарядом притягиваются, а с одинаковым - отталкиваются), а тяготеющие объекты только притягиваются; при малых масштабах (например, в атоме) резко преобладают электромагнитные силы, а при больших масштабах (например, при масштабах Земли) - гравитационные. Д.К.Максвелл вывел систему уравнений, описывающих взаимосвязь движения заряженных частиц и поведение электромагнитных сил. Центральным понятием теории Максвелла было понятие поля, которое избавило от затруднений, связанных с ньютоновским действием на расстоянии. В XIX в. поле описывалось по аналогии с движущейся жидкостью. Описание же поля как жидкости предполагает среду, передающую действие от одного заряда к другому. Такую гипотетическую жидкость назвали эфиром. Электромагнитные поля представлялись в виде натяжений в эфире. Заряженные частицы порождали в эфире волны натяжений, скорость распространения которых, как и показали расчеты, оказалась около 300000 км/с. Свет стал рассматриваться в виде электромагнитных волн, которые вызывались движениями заряженных частиц и которые распространялись в пространстве как колебания эфира. С открытием электромагнитных волн (радиоволны, сверхвысокочастотные, тепловые (инфракрасные), ультрафиолетовые, рентгеновские волны, гамма-излучения) появилась возможность проверки ньютоновской теории пространства и времени.

Информация о работе Важнейшие достижения естествознания 19 века