Автор работы: Пользователь скрыл имя, 13 Декабря 2011 в 11:45, контрольная работа
Понятие «физика» уходит своими корнями в глубокое прошлое, в переводе с греческого оно означает «природа». Основной задачей этой науки является установление «законов» окружающего мира. Одно из основных сочинений Платона, ученика Аристотеля, называлось «Физика».
Введение
Стр. 3
Глава 1. Механика Ньютона
Стр. 6
Глава 2. Законы движения Ньютона
Стр. 7
2.1 Первый закон Ньютона
Стр. 7
2.2 Второй закон Ньютона
Стр. 8
2.3 Третий закон Ньютона
Стр. 9
Глава 3. Законы всемирного тяготения
Стр. 12
Глава 4. Основная задача механики
Стр. 14
Глава 5. Приложение классической механики Ньютона в современной науке
Стр. 16
Заключение
Стр. 19
Список используемой литературы
Содержание
Введение |
Стр. 3 |
Глава 1. Механика Ньютона |
Стр. 6 |
Глава 2. Законы движения Ньютона |
Стр. 7 |
2.1 Первый закон Ньютона |
Стр. 7 |
2.2 Второй закон Ньютона |
Стр. 8 |
2.3 Третий закон Ньютона |
Стр. 9 |
Глава 3. Законы всемирного тяготения |
Стр. 12 |
Глава 4. Основная задача механики |
Стр. 14 |
Глава 5. Приложение классической механики Ньютона в современной науке |
Стр. 16 |
Заключение |
Стр. 19 |
Список используемой литературы |
Стр. 21 |
Введение
Понятие «физика» уходит своими корнями в глубокое прошлое, в переводе с греческого оно означает «природа». Основной задачей этой науки является установление «законов» окружающего мира. Одно из основных сочинений Платона, ученика Аристотеля, называлось «Физика».
Наука тех лет имела
Таким образом, это учение было собственно о Земле. На уровне своего времени оно отвечало основным требованиям, которые предъявлялись к научному знанию.
Во-первых, оно с единой точки зрения объясняло наблюдаемые перемещения небесных тел и, во-вторых, давало возможность вычислять их будущие положения. В то же время теоретические построения древних греков носили чисто умозрительный характер – они были совершенно оторваны от эксперимента.
Такая система просуществовала вплоть до XVI столетия, до появления учения Коперника, получившее свое дальнейшее обоснование в экспериментальной физике Галилея, завершившееся созданием ньютоновской механики, объединившей едиными законами движения перемещение небесных тел и земных объектов. Оно явилось величайшей революцией в естествознании, положившей начало развитию науки в ее современном понимании.
Галилео Галилей считал, что мир бесконечен, а материя вечна. Во всех процессах ничто не уничтожается и не порождается – происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики.
Для Ньютона было важно
И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская). По сути своей
это была
задача определения абсолютного времени,
дававшего при сравнении с местным
временем интервал времени,
который и можно было перевести
в долготу. Определить это время можно
было с помощью наблюдения движений
Луны среди звезд, а также с помощью точных
часов, поставленных по абсолютному
времени и находящихся у наблюдателя.
Для первого случая были
необходимы очень точные таблицы для
предсказания положения небесных
светил, а для второго – абсолютно
точные и надежные часовые механизмы.
Работы в этих направлениях
не были успешными. Найти
решение удалось лишь Ньютону,
который, благодаря открытию закона
всемирного тяготения и трех
основных законов механики, а также
дифференциального и интегрального
исчисления, предал механике характер
цельной научной теории.
1.
Механика Ньютона
Вершиной научного творчества И. Ньютона является его бессмертный труд “Математические начала натуральной философии”, впервые опубликованный в 1687 году. В нем он обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий – количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность понимал как степень заполнения единицы объема тела первичной материей. В этой работе изложено учение Ньютона о всемирном тяготении, на основе которого он разработал теорию движения планет, спутников и комет, образующих солнечную систему. Опираясь на этот закон, он объяснил явление приливов и сжатие Юпитера.
Концепция Ньютона явилась
2.
Законы движения Ньютона
Если кинематика изучает движение геометрического тела, который не обладает никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени, то динамика изучает движение реальных тел под действием приложенных к ним сил. Установленные Ньютоном три закона механики лежат в основе динамики и составляют основной раздел классической механики.
Непосредственно их можно
2.1
Первый закон Ньютона
Закон инерции впервые был установлен Галилеем для случая горизонтального движения: когда тело движется по горизонтальной плоскости, то его движение является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Ньютон дал более общую формулировку закону инерции как первому закону движения: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.
В жизни этот закон описывает случай когда, если перестать тянуть или толкать движущееся тело, то оно останавливается, а не продолжает двигаться с постоянной скоростью. Так автомобиль с выключенным двигателем останавливается. По закону Ньютона на катящийся по инерции автомобиль должна действовать тормозящая сила, которой на практике является сопротивление воздуха и трение автомобильных шин о поверхность шоссе. Они-то и сообщают автомобилю отрицательное ускорение до тех пор, пока он не остановится.
Недостатком данной
2.2
Второй закон Ньютона
В формулировке второго закона Ньютон ввел понятия:
. ускорение – векторная
. сила – векторная величина, понимаемая
как мера механического
. масса тела – физическая величина – одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.
Второй закон механики гласит: сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует, и обратно пропорционально массе тела.
Этот закон также справедлив только в инерциальных системах отсчета.
Первый
закон с математической точки
зрения представляет собой частный
случай второго закона, потому что, если
равнодействующие силы равны
нулю, то и ускорение также
равно нулю. Однако
первый закон Ньютона рассматривается
как самостоятельный закон, т.к.
именно он утверждает о существовании
инерциальных систем.
2.3
Третий закон Ньютона
Третий закон Ньютона гласит: действию всегда есть равное и противоположное противодействие, иначе тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению.
Ньютон распространил действие этого закона на случай и столкновения тел, и на случай их взаимного притяжения. Простейшей демонстрацией этого закона может служить тело, расположенное на горизонтальной плоскости, на которое действуют сила тяжести и сила реакции опоры, лежащие на одной прямой, равные по значению и противоположно направленные, равенство этих сил позволяет телу находиться в состоянии покоя.
Из трех фундаментальных
Ускорение тела зависит от величин, характеризующих действие других тел на данное тело, а также от величин, определяющих особенности этого тела.
Механическое действие на тело со стороны других тел, которое изменяет скорость движения данного тела, называют силой. Она может иметь разную природу (сила тяжести, сила упругости и т.д.). Изменение скорости движения тела зависит не от природы сил, а от их величины. Поскольку скорость и сила – векторы, то действие нескольких сил складывается по правилу параллелограмма. Свойство тела, от которого зависит приобретаемое им ускорение, есть инерция, измеряемая массой. В классической механике, имеющей дело со скоростями, значительно меньшими скорости света, масса является характеристикой самого тела, не зависящей от того, движется оно или нет. Масса тела в классической механике не зависит и от взаимодействия тела с другими телами. Это свойство массы побудило Ньютона принять массу за меру материи и считать, что величина ее определяет количество материи в теле. Таким образом, масса стала пониматься как количество материи.
Информация о работе Создание классической механики Ньютоном. Ее приложение в современной науке