Автор работы: Пользователь скрыл имя, 30 Октября 2012 в 22:06, реферат
Жизнь - это высшая по сравнению с физической и химической форма существования материи. Живые объекты отличаются от неживых обменом веществ - непрерывным условием жизни, способностью к размножению, росту, активной регуляции своего состава и функций, к различным формам движения, раздражимостью, приспособляемостью к среде и т. д.Система воспроизведения содержит в закодированном виде полную информацию для построения из запасенного клеткой органического вещества нужного в данный момент белка. Она же управляет механизмом извлечения и реализации программной информации. Свои функции система воспроизведения осуществляет посредством полимерных соединений — полинуклеотидов.
Введение……………………………………………………………………………………………3
1. Проблема сущности жизни……………………………………………………………………..4
2. Сущность системы воспроизведения жизни…………………………………………………..6
3. Носитель генетической информации…………………………………………………………19
4. Генетические свойства. Генная инженерия, генетическая информация, генетическая карта, генетический анализ…………………………………………………………………………….21
Заключение………………………………………………………………………………………..27
Список литературы……………………………………………………………………………….28
“Одно из двух,— говорит Гельмгольц.— Органическая жизнь или когда-либо началась (зародилась), или существует вечно”. Если признать первое, то теория панспермии теряет всякий логический смысл, так как если жизнь могла зародиться где-либо во вселенной, то, исходя из однообразия мира, мы не имеем никаких оснований утверждать, что она не могла зародиться и на Земле. Поэтому сторонники разбираемой теории принимают положение о вечности жизни. Они признают, что “жизнь только меняет свою форму, но никогда не создается из мертвой материи”.
Таким образом, они сразу и окончательно ставят крест над дальнейшим исследованием вопроса о происхождении жизни. Они стремятся вырыть непроходимый ров между живым и неживым и поставить предел стремлениям человеческого ума к тем безграничным обобщениям, к которым ведет его точная наука.
Биохимическая революция.
Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5 – 5 млрд. лет. По мнению многих биологов, в прошлом состояние нашей планеты было мало похоже на нынешнее: вероятно температура на поверхности была очень высокой (4000 - 8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, подвижек и сжатий коры, вызванных охлаждением, происходило образование складок и разрывов.
Полагают, что гравитационное поле еще недостаточно плотной планеты не могло удерживать легкие газы: водород, кислород, азот, гелий и аргон, и они уходили из атмосферы. Но простые соединения, содержащие среди прочих эти элементы (вода, аммиак, CO2 и метан). До тех пор, пока температура Земли не упала ниже 100°C, вся вода находилась в парообразном состоянии. Атмосфера была, по видимому, «восстановительной», о чем свидетельствует наличие в самых древних горнах породах металлов в восстановленной форме (например, двухвалентное железо). Более молодые породы содержат металлы в окисленной форме (Fe3+). Отсутствие кислорода, вероятно, было необходимым условием для возникновения жизни; как показывают лабораторные опыты, органические вещества (основа жизни) гораздо легче образуются в атмосфере бедной кислородом.
В 1923 г. А.И. Опарин, исходя из теоретических соображений, высказал мнение, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений. Энергию для этих процессов поставляла интенсивная солнечная радиация, главным образом ультрафиолетовое излучение, падавшее на Землю до того, как образовался слой озона, который стал задерживать большую ее часть.
По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался «первичный бульон», в котором могла возникнуть жизнь.
В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия,
предположительно существовавшие на первобытной Земле. В созданной им
установке (рис. 1) ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).
Позднее возникло предположение, что
в первичной атмосфере в
Многие из этих «теорий» и предлагаемые ими объяснения существующего разнообразия видов используют одни и те же данные, но делают упор на разные их аспекты. Научные теории могут быть сверхфантастическими с одной стороны, и сверхскептическими – с другой. Теологические соображения тоже могут найти себе место в этих рамках в зависимости от религиозных взглядов их авторов. Одним из главных пунктов разногласий, даже еще в додарвиновские времена, бал вопрос о соотношении между научными и теологическими взглядами на историю жизни.
3. Носитель генетической информации
Еще в 1869 году швейцарский биохимик Фридрих Мишер обнаружил в ядре клеток соединения с кислотными свойствами и с еще большей молекулярной массой, чем белки. Альтман назвал их нуклеиновыми кислотами, от латинского слова «нуклеус» - ядро. Так же, как и белки, нуклеиновые кислоты являются полимерами. Мономерами их служат нуклеотиды, в связи с чем нуклеиновые кислоты можно еще назвать полинуклеотидами.
Нуклеиновые кислоты были найдены
в клетках всех организмов, начиная
от простейших и кончая высшими. Самое
удивительное, что химический состав,
структура и основные свойства этих
веществ оказались сходными у
разнообразных живых организмов
В живых клетках содержится два типа нуклеиновых кислот - дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Как ДНК, так и РНК несут в себе нуклеотиды, состоящие из трех компонентов: азотистого основания, углевода, остатка фосфорной кислоты. Однако комбинация этих компонентов в ДНК и РНК несколько различны.
Фосфорная кислота в молекулах ДНК и РНК одинакова. Углевод же имеется в двух вариантах: у нуклеотидов ДНК - дезоксирибоза, а у нуклеотидов РНК - рибоза. И рибоза, и дезоксирибоза - пятичленные, пятиуглеродистые соединения - пентозы. У дезоксирибозы, в отличие от рибозы, лишь на один атом кислорода меньше, что и определяет ее название, так как дезоксирибоза в переводе с латинского означает лишенная кислорода рибоза. Строгая локализация дезоксирибозы в ДНК, а рибозы в РНК, как раз и определяет название этих двух видов нуклеиновых кислот.
Третий компонент нуклеотидов ДНК и РНК - азотистые соединения, то есть вещества, содержащие азот и обладающие щелочными свойствами. В нуклеиновые кислоты входят две группы азотистых оснований. Одни из них относятся к группе пиримидинов, основу строения которых составляет шестичленное кольцо, а другие к группе пуринов, у которых к пиримидинову кольцу присоединено еще и пятичленное кольцо.
В состав молекул ДНК и РНК входят два разных пурина и два разных пиримидина. В ДНК имеются пурины - аденин, гуанин и пиримидины - цитозин, тимин. В молекулах РНК те же самые пурины, но из пиримидинов - цитозин и вместо тимина - урацил. В зависимости от содержания того или иного азотистого основания нуклеотиды называются адениловыми, тимиловыми, цитозиловыми, урациловыми, гуаниловыми.
Последовательность
ДНК представляет свою двойную спираль.
Полинуклеидные цепи достигают гигантских размеров. Вполне понятно, что в связи с этим они так же, как и белки, определенным образом упакованы в клетке.
Образование связей в молекуле ДНК - процесс строго закономерный. Адениловый нуклеотид может образовывать связи лишь с тимиловым, а гуаниловый только с цитозиловым. Эта закономерность получила название принципа комплиментарности, то есть дополнительности. В самом деле, такая строгая последовательность в выборе пары наводит на мысль, что в двойной молекуле ДНК аденин как бы дополняет тимин и наоборот, а гуанин соответственно - цитозин, как две половинки разбитого зеркала.
Принцип комплиментарности позволяет
понять механизм уникального свойства
молекул ДНК - их способность
ДНК в клетке локализована в основном в ядре, в его структурных компонентах - хромосомах.
4. Генетические свойства. Генная инженерия, генетическая информация, генетическая карта, генетический анализ.
Генная инженерия возникает в 70-е гг. как новая отрасль молекулярной биологии, главная задача которой - активная и целенаправленная перестройка генов живых существ, их конструирование, то есть управление наследственностью.
Генная инженерия - раздел молекулярной генетики, связанный с целенаправленным созданием in vitro новых комбинаций генетического материала, способного размножаться в клетке-хозяине и синтезировать конечные продукты обмена. Возникла в 1972 году, когда в лаборатории П. Берга (Станфордский университет, США) была получена первая рекомбинантная (гибридная) ДНК (рек ДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.
Ключевое значение при конструировании рекДНК in vitro имеют фрагменты - рестриктазы, рассекающие молекулу ДНК на фрагменты по строго определенным местам, и ДНК - липазы, сшивающие фрагменты ДНК в единое целое. Только после выделения таких фрагментов создание искусственных генетических структур стало технически выполнимой задачей. Рекомбинантная молекула ДНК имеет форму кольца, она содержит ген (гены), составляющий объект генетических манипуляций, и так называемый вектор-фрагмент ДНК, обеспечивающий размножение рек ДНК и синтез конечных продуктов деятельности генетической системы белков. Последнее происходит уже в клетке -хозяине, куда вводится рек ДНК. Гены, подлежащие клонированию, могут быть получены в составе фрагментов путем механического или рестриктазного дробления тотальной ДНК. Но структурные гены, как правило, приходиться либо синтезировать химико-биологическим путем, либо получать в виде ДНК- копии информационных РНК, соответствующих избранному гену. Структурные гены содержат только кодированную запись конечного продукта (белка, РНК), полностью лишены регуляторных участков и потому неспособны, функционировать ни в клетке- хозяине, ни in vitro. Функциональные свойства рекДНК придает вектор, в котором присутствуют участки начало репликации (обеспечивает размножение рекДНК), генетические маркеры, необходимые для селекции, регуляторные участки, обязательные для траксрипции и трансляции генов. Большая часть векторов получена из плазмид кишечной палочки и других бактерий. Используя также векторы на основе фага лямбда, вирусов SV40 и полиомы, дрожжей, Agrobacterium tumefaciens и другие.
При получении рекДНК образуется чаще всего несколько структур, из которых только одна является нужной. Поэтому обязательный этап составляет селекция и молекулярное клонирование рекДНК, введенной путем трансформации в клетку-хозяина. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и другие бактерии, а так же дрожжи (Saccharomyces cerevisiae),животные и растительные клетки. Система вектор-хозяин
Не может быть произвольной: вектор подгоняется к клетке-хозяину, его выбор зависит от видовой специфичности и целей исследователя. Существует три пути селекции рекДНК : генетический (по маркерам, с помощью избирательных сред), иммунохимический и гибридизационный с мечеными ДНК и РНК. РекДНК характеризуют физическим картированием (расщепление рекстриктазами и электрофорез фрагментов в геле) и анализом первичной структуры. В результате интенсивного развития методов генной инженерии получены клоны многих генов рибосомальной, транспортной и 5S PHK, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека, а совсем недавнее открытие - расшифровка генома человека, сделанное в январе двухтысячного года, позволит в скором будущем клонировать человека. На основе генной инженерии возникла отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Допущен для лечебного применения инсулин человека (хумулин), полученный по средством рекомбинантных ДНК. Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания строения и функционирования генетического аппарата. В основе же генной инженерии заложены знания о свойствах организмов, которые передаются по наследству -это так называемая генетическая информация.
Информация о работе Система воспроизведения материальных основ жизни