Автор работы: Пользователь скрыл имя, 08 Декабря 2011 в 19:55, реферат
Во второй половине XX века произошли два события, которые, на наш взгляд, в значительной мере определяют дальнейшие пути научного постижения мира. Речь идет о создании теории информации и о начале исследований механизмов антиэнтропийных процессов, для изучения которых синергетика привлекает все новейшие достижения неравновесной термодинамики, теории информации и общей теории систем.
Принципиальное отличие данного этапа развития науки от предшествующих этапов заключается в том, что до создания перечисленных направлений исследований наука способна была объяснить лишь механизмы процессов, приводящих к увеличению хаоса и возрастанию энтропии. Что касается разрабатываемых со времен Ламарка и Дарвина биологических и эволюционных концепций, то они и по сей день не имеют строгих научных обоснований и противоречат Второму началу термодинамики, согласно которому сопровождающее все протекающие в мире процессы возрастание энтропии есть непременный физический закон.
Введение……………………………………………………………………………..3
1. I начало термодинамики…………………………………………………………6
2. Обратимые и необратимые процессы…………………………………………...9
3. Понятие об энтропии. II начало термодинамики……………………………...12
4 Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана…………………………………………………………………………...14
Заключение………………………………………………………………………….16
Список литературы…………………………………………………………………17
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
КАМСКАЯ
ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-
по дисциплине «Концепции современного естествознания»
по
теме: Принцип возрастания
энтропии.
Выполнил:
Студент Яруллина С.А.
(Ф.И.О.)
Группы
5116-в
______________ (подпись)
«___»__________
201_ г.
Проверил:
Милованов
В.Н
(ученое
звание Ф.И.О.)
______________ (подпись)
«___»__________
201_ г.
Набережные Челны, 2010
Содержание
Введение…………………………………………………………
1. I начало термодинамики……………………………………………
2. Обратимые и необратимые процессы…………………………………………...9
3. Понятие об энтропии. II начало термодинамики……………………………...12
4 Проблема
тепловой смерти Вселенной и флуктуационная
гипотеза Больцмана………………………………………………………
Заключение……………………………………………………
Список литературы…………………………………
Введение
Во второй половине XX века произошли два события, которые, на наш взгляд, в значительной мере определяют дальнейшие пути научного постижения мира. Речь идет о создании теории информации и о начале исследований механизмов антиэнтропийных процессов, для изучения которых синергетика привлекает все новейшие достижения неравновесной термодинамики, теории информации и общей теории систем.
Принципиальное отличие данного этапа развития науки от предшествующих этапов заключается в том, что до создания перечисленных направлений исследований наука способна была объяснить лишь механизмы процессов, приводящих к увеличению хаоса и возрастанию энтропии. Что касается разрабатываемых со времен Ламарка и Дарвина биологических и эволюционных концепций, то они и по сей день не имеют строгих научных обоснований и противоречат Второму началу термодинамики, согласно которому сопровождающее все протекающие в мире процессы возрастание энтропии есть непременный физический закон.
Заслуга
неравновесной термодинамики
Важнейшим шагом на пути постижения природы и механизмов антиэнтропийных процессов следует введение количественной меры информации. Первоначально эта мера предназначалась лишь для решения сугубо прикладных задач техники связи. Однако последующие исследования в области физики и биологии позволили выявить универсальные меры, предложенные К.Шенноном, позволяющие установить взаимосвязь между количеством информации и физической энтропией и в конечном счете определить сущность новой научной интерпретации понятия «информация» как меры структурной упорядоченности самых разнообразных по своей природе систем.
Используя метафору, можно сказать, что до введения в науку единой информационной количественной меры представленный в естественно-научных понятиях мир как бы «опирался на двух китов»: энергию и вещество. «Третьим китом» оказалась теперь информация, участвующая во всех протекающих в мире процессах, начиная от микрочастиц, атомов и молекул и кончая функционированием сложнейших биологических и социальных систем.
Естественно, возникает вопрос: подтверждают или опровергают эволюционную парадигму происхождения жизни и биологических видов новейшие данные современной науки?
Для ответа на этот вопрос необходимо прежде всего уяснить, какие именно свойства и стороны многогранного понятия «информация» отражает та количественная мера, которую ввел в науку К.Шеннон.
Использование
меры количества информации позволяет
анализировать общие механизмы
информационно-энтропийных
Вместе
с тем информационно-
Проводимые
современной наукой исследования свойств
информационных систем дают все основания
утверждать, что все системы могут
формироваться только согласно спускаемым
с верхних иерархических
В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования. Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.
Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях.
Первый
закон термодинамики
Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д.
В
качестве третьего начала термодинамики
принимается принцип
В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.
Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.
Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.
Существует
несколько эквивалентных
ΔU = Q − A + μΔN + A'.
Для элементарного количества теплоты δQ, элементарной работы δA и малого приращения dU внутренней энергии первый закон термодинамики имеет вид:
dU = δQ − δA + μdN + δA'.
Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.
Важно заметить, что dU и dN являются полными дифференциалами, а δA и δQ — нет.
Рассмотрим несколько частных случаев:
Если δQ > 0, то это означает, что тепло к системе подводится.
Если δQ < 0, аналогично — тепло отводится.
Если δQ = 0, то система не обменивается теплом с окружающей средой и называется адиабатически изолированной.
Обобщая: в конечном процессе 1 → 2 элементарные количества теплоты могут быть любого знака. Общее количество теплоты, которое мы назвали просто Q — это алгебраическая сумма количеств теплоты, сообщаемых на всех участках этого процесса. В ходе процесса теплота может поступать в систему или уходить из неё разными способами.
При отсутствии работы над системой и потоков энергии-вещества, когда δA' = 0, δQ = 0, dN = 0, выполнение системой работы δA приводит к тому, что ΔU < 0, и энергия системы U убывает. Поскольку запас внутренней энергии U ограничен, то процесс, в котором система бесконечно долгое время выполняет работу без подвода энергии извне, невозможен, что запрещает существование вечных двигателей первого рода.
Первое начало термодинамики:
Q = ∆U + A = ∆U + p∆V
Q = ∆U = CV∆T
Q = A = PTln
Здесь
m — масса газа, M — молярная масса газа,
CV — молярная теплоёмкость при постоянном
объёме, p, V, T — давление, объём и температура
газа соответственно, причём последнее
равенство верно только для идеального
газа.
Процесс называется равновесным, если в прямом и обратном направлении проходит через одни и те же состояния бесконечно близкие к равновесию. Работа равновесного процесса имеет максимальную величину по сравнению с неравновесными процессами и называется максимальной работой.
Если равновесный процесс протекает в прямом, а затем в обратном направлении так, что не только система, но и окружающая среда возвращается в исходное состояние и в результате процесса не остается никаких изменений во всех участвовавших в процессе телах, то процесс называется обратимым.