Особенности биологии XX в

Автор работы: Пользователь скрыл имя, 15 Марта 2012 в 18:56, курсовая работа

Краткое описание

В XX в динамичное развитие биологического познания позволило открыть молекулярные основы живого и непосредственно приблизиться к решению величайшей проблемы науки — раскрытию сущности жизни. Радикально изменились и сама биология, и ее место, роль в системе наук, отношение биологической науки и практики Биология постепенно становится лидером естествознания.

Содержание работы

Введение

I. Век генетики
1. Хромосомная теория наследственности
2. Создание синтетической теории эволюции
3. Революция в молекулярной биологии
II. МИР ЖИВОГО.
1. Особенности живых систем
1.1. Существенные черты живых систем
1.2. Основные уровни организации живого
2. Возникновение жизни на Земле
2.1. Развитие представлений о происхождении жизни
3. Развитие органического мира
3.1. Основные этапы геологической истории Земли
3.2. Начальные этапы эволюции жизни
3.3.Образование царства растений и царства животных
3.4. Завоевание суши
3.5. Основные пути эволюции наземных растений
3.6. Пути эволюции животных

Вывод
Используемая литература

Содержимое работы - 1 файл

Естествознание курсовая.doc

— 186.50 Кб (Скачать файл)

 

1.2. Основные уровни организации живого

 

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны. Среди них: молекулярный, кле­точный, тканевой, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный.

Молекулярно-генетический уровень. Знание закономерностей молекулярно-генетического уровня организации живого — необходи­мая предпосылка для ясного понимания жизненных явлений, проис­ходящих на всех остальных уровнях организации жизни. На этом уровне организации жизни гены представляют собой элементарные единицы.

Выяснено, что основные структуры на этом уровне, несущие в себе коды наследственной информации, представлены молекулами ДНК, дифференцированными по длине на элементы кода — трипле­ты азотистых оснований, образующих гены. Основные свойства генов: способность их к конвариантной редупликации, к локальным структурным изменениям (мутациям), способность передавать хран­ящуюся в них информацию внутриклеточным управляющим системам.

Молекула ДНК представляет собой две спаренные нити, закручен­ные в спирали. Каждая из этих нитей соединяется с другой водород­ными связями; причем каждая из таких связей попарно соединяет либо аденин одной цепи с тимином другой, либо гуанин с цитозином. Конвариантная редупликация происходи-то матричному принципу. Сначала разрываются водородные связи двойной спирали ДНК с участием фермента ДНК-полимеразы. Затем каждая из нитей на своей поверхности строит соответствующую нить, после чего новые нити комплементарно соединяются между собой. Пиримидиновые и :пуриновые основания комплементарных нитей «сшиваются» между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК, состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с.

В синтезе белков важная роль принадлежит также и РНК. Синтез белка происходит в особых областях клетки — рибосомах. Рибосомы иногда образно называют «фабриками белка». Существует по крайне мере три типа РНК: высокомолекулярная РНК, локализующаяся в рибосомах; информационная-РНК, образующаяся в ядре клетки; транспортная-РНК.

В ядре генетический код переносится с молекул ДНК на молекулу информационной-РНК. Генетическая информация о последователь­ности и характере синтеза белка переносится из ядра молекулами информационной-РНК в цитоплазму к рибосомам и там участвует в синтезе белка. Перенос и присоединение отдельных аминокислот к месту синтеза осуществляется транспортной-РНК. Белок, содержа­щий тысячи аминокислот, в живой клетке синтезируется за 5 — 6 мин.

Таким образом, как при конвариантной редупликации, так и при внутриклеточной передаче информации используют единый матрич­ный принцип: исходные молекулы ДНК и РНК являются матрицами, рядом с которыми строятся соответствующие макромолекулы. Моле­кулы ДНК играют роль кода, в котором как бы «зашифрованы» все синтезы белковых молекул в клетках организма. Характерно, что все биологические организмы, известные нам на Земле, используют оди­наковый тип генетического кода. Редупликация, основанная на мат­ричном копировании, делает возможным сохранение не только гене­тической нормы, но и отклонений от нее, т.е. мутаций (основа про­цесса эволюции).

Онтогенетический уровень. Следующий, более сложный, ком­плексный уровень организации жизни на Земле — онтогенетический. Он связан с жизнедеятельностью отдельных биологических особей, дискретных индивидуумов. Индивид, особь — неделимая и целостная единица жизни на Земле. В многобразной земной органической жизни особи имеют различное морфологическое содержание. Здесь и одноклеточные, состоящие из ядра, цитоплазмы, множества органелл и мембран, макромолекул и т. д. Здесь и многоклеточная особь, образованная из миллионов и миллиардов клеток. Сложность много­клеточных особей неизмеримо выше сложности одноклеточных. Но и одноклеточная и многоклеточная особи обладают системной орга­низацией и выступают как единое целое.

Причем важно то, что характеристика особи не может быть исчер­пана рассмотрением физико-химических свойств макромолекул, вхо­дящих в его состав. Разделить особь на части без потери «индивиду­альности» невозможно. Это позволяет выделить онтогенетический уровень как особый уровень организации жизни. Таким образом, на онтогенетическом уровне единицей жизни служит особь — с момента  рождения до смерти.

Развитие особи, последовательность морфологических, физиоло­гических и биохимических преобразований, претерпеваемых орга­низмом от образования зародышевой клетки до смерти составляет содержание процесса онтогенеза. Онтогенез состоит из роста, пере­мещения отдельных структур, дифференциации и усложнения интег­рации организма. По сути, онтогенез — это процесс реализации на­следственной информации, закодированной в управляющих структу­рах зародышевой клетки, а также испытания, проверки согласован­ности и работы управляющих систем во времени и пространстве, приспособления особи к среде и др.

Причины развития организма в онтогенезе являются предметом обстоятельного и интенсивного изучения эмбриологами, биохими­ками, генетиками. Многие отрасли биологии изучают процессы и явления, происходящие в особи, согласованное функционирование ее органов и систем, механизм их работы, роль в жизнедеятельности организма, взаимоотношение органов, поведение организмов, приспособительные изменения и т.п. Пока не создана общая теория онтогенеза, неясны все причины и факторы, определяющие строгую организованность этого процесса.

Вместе с тем до сих пор не известно, почему в онтогенезе строго определенные процессы происходят в должное время и в должном месте. Одна из важнейших проблем современной биологии — выяв­ление закономерностей регуляции внутриклеточных процессов, функций клетки и механизма включения генов в процессе клеточной дифференцировки, ведь в процессе развития каждой клетки в ней работают только те гены, функция которых необходима для развития данной ткани (органа).

Популяционно-видовой уровень. Особи в природе не абсолют­но изолированы друг от друга, а объединены более высоким рангом биологической организации. Это популяционно-видовой уровень. Он возникает там и тогда, где и когда происходит объединение осо­бей в популяции, а популяций в виды. Популяции - это совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида.

Популяции целостны, хотя состоят из множества особей. Их це­лостность базируется на иных основаниях, чем целостность молеку­лярно-генетического и онтогенетического уровней. Она обеспечива­ется взаимодействием особей в популяциях и воссоздается через обмен генетическим материалом в процессе полового размножения. Виды — это системы популяций.

Популяции выступают как элементарные, далее неразложимые эволюционные единицы, представляющие собой генетически от­крытые системы, так как особи из разных популяций иногда скрещи­ваются и популяции обмениваются генетической информацией. На популяционно-видовом уровне особую роль играет свободное скре­щивание между особями внутри популяции и вида.

Популяция — основная элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне — изменение генотипического состава популяции; элементарный материал на этом уровне — мутации.

Популяции и виды, а также протекающий в популяциях процесс . эволюции всегда существуют в определенной природной среде, кон­кретной системе, которая включает в себя биотические и абиотичес­кие факторы. Такая система получила название «биогеоценоз» — это элементарная единица следующего (биогеоценотического) уровня организации жизни на Земле.

Биогеоценотический уровень. Популяции разных видов взаимодействуют между собой. В ходе взаимодействия они объединяются в сложные системы — биоценозы. Биоценоз - совокупность растений, жи­вотных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся опреде­ленными взаимосвязями между собой. Компоненты, образующие биоце­ноз, взаимозависимы. Изменения, касающиеся только одного вида,  могут сказаться на всем биоценозе и даже вызвать его распад. Биоценозы входят в качестве составных частей в еще более сложные системы (сообщества) — биогеоценозы.

Биогеоценоз (экосистема, экологическая система) - взаимообусловленный  комплекс живых и абиотических компонентов, связанных между собой обме­ном веществ и энергией.

Биогеоценоз — это целостная система. Виды в биогеоценозе действуют друг на друга не только по принципу прямой, но и обратной связи (в том числе посредством изменения ими абиотических условий). Выпадание одного или нескольких компонентов биогеоценоза; может привести к разрушению целостности биогеоценоза, что часто  ведет к необратимому нарушению равновесия и гибели биогеоценоза как системы. В целом жизнь биогеоценоза регулируется силами, действующими внутри самой системы, т.е. можно говорить о саморегуляции биогеоценоза. В то же время биогеоценоз представляет собой незамкнутую систему, имеющую каналы вещества и энергии, связы­вающие соседние биогеоценозы. Обмен веществ и энергией между соседними биогеоценозами может осуществляться в разных формах: газообразной, жидкой и твердой, а также в форме миграции жи­вотных.

Высокоорганизованные организмы для своего существования нуждаются в более простых организмах; каждая экосистема неизмен­но содержит как простые, так и сложные компоненты. Биогеоценоз только из бактерий или деревьев никогда не сможет существовать, как нельзя представить экосистему, населенную лишь позвоночными или млекопитающими. Таким образом, низшие организмы в экосис­теме — это не какой-то случайный пережиток прошлых эпох, а необ­ходимая составная часть биогеоценоза, целостной системы органи­ческого мира, основа его существования и развития, без которой не возможен обмен веществом и энергией между компонентами биогео­ценоза.

Абиотическими компонентами биогеоценозов являются атмо­сфера, солнечная энергия, почва, вода. Первичной биотической основой для сложения биогеоценозов служат автотрофы — зеленые растения и микроорганизмы, хемосинтетики, производящие орга­ническое вещество. Автотофные растения и микроорганизмы пред­ставляют жизненную среду для гетеротрофов — животных, грибов, большинства бактерий, вирусов. Поэтому и границы биогеоценозов чаще всего совпадают с границами растительных сообществ (фитоценозов). Но и животные впоследствии начинают играть важную роль в жизни растений: они осуществляют опыление, распростра­нение плодов, участвуют в круговороте веществ и т.д. Так склады­вается биогеоценотический комплекс, который может существовать веками.

Вся совокупность связанных между собой круговоротом веществ и энергии биогеоценозов на поверхности нашей планеты образуют мощную систему биосферы Земли. Верхняя граница жизни в атмосфере достигает при­мерно 25—30 км, нижняя граница в земной коре сосредоточена в самом верхнем ее слое — до 10 м. (Хотя отдельные виды микроорга­низмов встречаются в нефтеносных слоях на глубине до 3 км.) В гидросфере (океаны и моря) зона, богатая живыми организмами, зани­мает слой воды до 200 м, но некоторые организмы обнаружены и на максимальной глубине глубоководных океанских впадин — до 11 км. Таким образом, «пленка жизни» на Земле достаточно тонкая и дости­гает всего лишь около 40 км. Она ограничена интенсивным потоком губительных ультрафиолетовых лучей за пределами озонового слоя в тропосфере и высокой температурой земных недр (на глубине 3 км она может достигать 100° С).

Благодаря деятельности растений биосфера стала аккумулятором солнечной энергии.

Между неорганической и органической материей на Земле суще­ствует постоянный кругооборот вещества и энергии, в котором про­является закон сохранения массы и энергии: каждое живое существо благодаря следующим цепям питания (особенно бактериям) после окончания жизненного цикла возвращает природе все, что взяло от нее в течение жизни. Именно кругооборот вещества и энергии обес­печивает продолжительность существования жизни, потому что иначе на Земле запасы необходимых элементов были бы очень бы­стро исчерпаны. Рассматривая биосферу Земли как единую экологи­ческую систему, можно убедиться, что живое вещество Земли сущест­венно не уменьшается и не увеличивается в массе, а только переходит из одного состояния в другое.

Раздел биологии, изучающий экологические системы (биоценозы, биогеоценозы) называется биогеоценология. Основателем ее был выдающийся отечественный ученый В.И. Сукачев, учение о био­сфере создал наш великий мыслитель В.И. Вернадский.

Таким образом, молекулярно-генетический, онтогенетический, популяционно-видовой и биоценотический уровни — четыре основ­ных уровня организации жизни на Земле.

 

2. Возникновение жизни на Земле

2.1. Развитие представлений о происхождении жизни

 

Происхождение жизни — одна из трех важнейших мировоззренчес­ких проблем наряду с проблемой происхождения нашей Вселенной и проблемой происхождения человека.

Попытки понять, как возникла и развивалась жизнь на Земле, были предприняты еще в глубокой древности. В античности сложи­лись два противоположных подхода к решению этой проблемы. Пер­вый, религиозно-идеалистический, исходил из того, что возникнове­ние жизни на Земле не могло осуществиться естественным, объектив­ным, закономерным образом; жизнь является следствием божествен­ного творческого акта (креационизм), и потому всем существам свойственна особая  независимая от материального мира «жизнен­ная сила» (vis vitalis), которая направляет все процессы жизни (вита­лизм). В основе второго, материалистического подхода лежало пред­ставление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. Несмотря на свою примитивность, первые исторические формы кон­цепции самозарождения сыграли прогрессивную роль в борьбе с креационизмом.

Идея самозарождения получила широкое распространение в сре­дневековье и эпоху Возрождения, когда допускалась возможность самозарождения не только простых, но и довольно высокооргани­зованных существ, даже млекопитающих (например, мышей из тря­пок). Например, в трагедии В. Шекспира «Антоний и Клеопатра» Леонид говорит Марку Антонию: «Ваши египетские гады заводятся в грязи от лучей вашего египетского солнца. Вот, например, кро­кодил...». Известны попытки Парацельса разработать рецепты ис­кусственного человека (гомункулуса).

Информация о работе Особенности биологии XX в