Контрольная работа по "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 24 Января 2013 в 20:00, контрольная работа

Краткое описание

1. Синергетика – теория самоорганизации.
Почему целое может обладать свойствами, которыми не обладает ни одна из его частей? В чем человек видит сложность окружающего его мира? Почему, зная фундаментальные физические законы, мы не можем предсказывать поведение простейших биологических объектов? Как согласовать следующую из классической термодинамики тенденцию к установлению равновесия с переходом от простого к сложному, от низшего к высшему, который мы видим в ходе биологической эволюции?

Содержание работы

Синергетика – теория самоорганизации.
Галактика. Структура галактик. Эволюция звезд.
Биосфера, ноосфера и техносфера.

Содержимое работы - 1 файл

конц совр ест.docx

— 44.37 Кб (Скачать файл)

Содержание

  1. Синергетика – теория самоорганизации.
  2. Галактика. Структура галактик. Эволюция звезд.
  3. Биосфера, ноосфера и техносфера.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Синергетика – теория самоорганизации.

    Почему целое может обладать свойствами, которыми не обладает ни одна из его частей? В чем человек видит сложность окружающего его мира? Почему, зная фундаментальные физические законы, мы не можем предсказывать поведение простейших биологических объектов? Как согласовать следующую из классической термодинамики тенденцию к установлению равновесия с переходом от простого к сложному, от низшего к высшему, который мы видим в ходе биологической эволюции?

    Еще полтора десятилетия назад эти вопросы относили к компетенции философии. Сейчас они встают в конкретном контексте физических, химических, биологических задач. В их решении все больше помогает теория самоорганизации, или синергетика.

    Когда мы говорим о молодой науке, естественно спросить: почему ее не было раньше, что привело к ее возникновению, чем отличается взгляд на мир этой науки от представлений, выработанных раньше? Попробуем ответить на эти вопросы.

    Наверное, вы не раз задумывались над поразительным отличием систем, существующих в природе, от тех, что созданы человеком. Для первых характерны устойчивость относительно внешних воздействий, самообновляемость, возможность к самоусложнению, росту, развитию, согласованность всех составных частей. Для вторых – резкое ухудшение функционирования даже при сравнительно небольшом изменении внешних воздействий или ошибках в управлении. Сам собой напрашивается вывод: нужно позаимствовать опыт построения организации, накопленный природой, и использовать его в нашей деятельности. Отсюда вытекает одна из задач синергетики – выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновении, развитии и самоусложнении.

    При решении задач в самых разных областях от физики и химии до экономики и экологии, создание и сохранение организации, формирование упорядоченности является либо целью деятельности, либо ее важным этапом. Приведем два примера. Первый – задачи, связанные с управляемым термоядерным синтезом. В большинстве проектов самый важный момент – создание необходимой пространственной или пространственно-временной упорядоченности.

    Другой пример – формирование научных коллективов, где активная творческая работа большинства сотрудников должна сочетаться с возможностью совместно решать крупные задачи. Такой коллектив должен быть устойчив и быстро реагировать на все новое. Какова оптимальная организация, позволяющая добиваться этого?

    Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем – энергетических, экологических, многих других, требующих привлечения огромных ресурсов. Здесь нет возможности искать ответ методом проб и ошибок, а «навязать» системе необходимое поведение очень трудно. Гораздо разумнее действовать, опираясь на знание внутренних свойств системы, законов ее развития. В такой ситуации значение законов самоорганизации, формирования упорядоченности в физических, биологических и других системах трудно переоценить.

    Другая причина, обусловившая создание синергетики, – необходимость при решении ряда задач науки и техники анализировать сложные процессы различной природы, используя при этом новые математические методы.

    Классическая математическая физика (т.е. наука об исследовании математических моделей физики) имела дело с линейными уравнениями. Формально это уравнения, в которые неизвестные входят только в первой степени. Реально они описывают процессы, идущие одинаково при разных внешних воздействиях. С увеличением интенсивности воздействий изменения остаются количественными, новых качеств не возникает. Область применения линейных уравнений необычайно широка. Она охватывает классическую и квантовую механику, электродинамику и теорию волн. Методы их решения, разрабатывавшиеся в течение столетий, обладают большой общностью и эффективностью.

    Однако ученым все чаще приходится иметь дело с явлениями, где более интенсивные внешние воздействия приводят к качественно новому поведению системы. Здесь нужны нелинейные математические модели. Их анализ – дело гораздо более сложное, но при решении многих задач он необходим. Это приводит к формированию широкого фронта исследований нелинейных явлений, к попыткам создать общие подходы, применимые ко многим системам (к таким подходам относится и синергетика).

    Современная наука все чаще формулирует свои закономерности, обращаясь к более богатому и сложному миру нелинейных математических моделей.

    Новым инструментом изучения нелинейных моделей стал вычислительный эксперимент. Ученые получили возможность «проиграть» модель изучаемого процесса во многих вариантах, используя мощные ЭВМ. И что особенно важно – вычислительный эксперимент может привести к открытию новых явлений.

    Широкое использование ЭВМ показало, что ни быстродействие вычислительных машин, ни рост объема расчетов не являются панацеей от всех бед, сами по себе они не дают понимания изучаемых нелинейных задач.

    Нужны понятия, подходы, обобщения, которые отражают важнейшие общие черты исследуемых явлений и помогают построить их адекватные математические модели. Все это также стало мощным стимулом развития синергетики.

    Взгляды, вырабатываемые современной наукой при решении многих задач, иногда оказываются созвучными размышлениям ученых и философов, живших много веков назад, в частности близкими к мыслям и воззрениям, характерным для философских течений Древнего Востока. Зачастую совпадает не только общий подход, но и конкретные детали. Возникает вопрос: почему синергетика, опирающаяся на достижения современной науки, на диалектико-материалистическое мировоззрение, приходит к выводам, сделанным тысячелетия назад?

    Первая причина – общность предмета анализа. Изучаются сложные самоорганизующиеся системы, причем акцент делается на внутренние свойства как на источник саморазвития.

    Вторая причина – новое отношение к проблеме целого и части. Для философских школ Древней Греции характерно предположение, что часть всегда проще целого, что, изучив каждую из частей, можно понять свойства целого. И естествознание – вплоть до последних десятилетий – этот подход вполне устраивал. Однако сначала общественные науки, а потом и точные пришли к выводу о необходимости целостного, системного анализа многих объектов.

    Синергетика, как правило, имеет дело с процессами, где целое обладает свойствами, которых нет ни у одной из частей. Целое в таких системах отражает свойства частей, но и части отражают свойства целого. Здесь нельзя утверждать, что целое сложнее части, оно совсем другое.

    Третье. Имея дело со сложными, жизненно важными для нас объектами (например, экологическими системами), приходится действовать предельно осторожно. Успех здесь возможен только в том случае, если мы знаем внутренние свойства системы. Отсюда стратегия – действие, сообразуемое с законами природы, разумная соразмерность с естественным ритмом, с постоянно меняющимися условиями.

    Наверное, нетерпеливый читатель несколько разочарован: авторы никак не хотят просто и конкретно сказать, чем же занимается синергетика.

    Нам кажется, здесь уместно вспомнить суждение Гегеля о том, что ни одно определение не кажется содержательным, пока не ясен смысл входящих в него понятий (для нас таким понятием является понятие структуры). Когда же смысл понят, определение становится просто ненужным. Ответ на вопрос, чем занимается синергетика, каков ее предмет и перспективы, неоднозначен.

    В синергетике широко используют уравнения в частных производных. Эти уравнения – инструмент исследования процессов, в которых изучаемые величины изменяются не только во времени, но и в пространстве. Разрабатываться он начал два века назад в связи с задачами гидродинамики и механики сплошных сред. Наиболее простыми и детально изученными являются линейные уравнения в частных производных.

    «Использование математики в науке – это использование языка, при помощи которого мы можем устанавливать соотношения слишком сложные, чтобы их можно было кратко описать обычным языком». Роль этого языка трудно переоценить. Именно из-за того, что он есть, мы можем за несколько лет изучить в школе законы механики, оптики, электромагнетизма – разделов, на создание которых потребовались столетия интенсивной работы исследователей.

  1. Галактика. Структура галактик. Эволюция звезд.

 

    Галактика состоит из двух основных подсистем диска и гало, вложенных одна в другую и гравитационно-связанных друг с другом. Первая - сферическое гало, ее звезды концентрируются к центру галактики, а плотность вещества, высокая в центре галактики, довольно быстро падает с удалением от него. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж.  Вторая подсистема – это массивный звездный диск. Его масса равна 150 млрд. масс Солнца. Он представляет собой как бы две сложенные краями тарелки. В диске концентрация звезд значительно больше, чем в гало.

     Центральная, наиболее компактная область Галактики называется ядром. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звезд, по яркости сопоставимых с Луной. Однако Солнце расположено достаточно далеко от ядра Галактики – на расстоянии 8 КПК (около 26 000 световых лет). Поэтому, если в окрестностях Солнца, в диске, одна звезда приходится на 8 кубических парсеков, то в центре Галактики в одном кубическом парсеке находится 10 000 звезд.  Центр Галактики находится в направлении созвездия Стрельца. В 2004 году окончательно доказано, что в центре Галактики находится черная дыра с массой около трех миллионов масс Солнца.

    В кольцевой области галактического диска от 3 до 7 КПК сосредоточено почти все молекулярное вещество межзвездной среды (облака пыли и газа); там находится наибольшее количество пульсаров и источников инфракрасного излучения. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи, так как Солнце находится в плоскости галактического диска. Размеры Галактики:   диаметр диска - 30 КПК (100 000 световых лет), толщина диска – 1000 световых лет.

    Изучение собственных движений звезд в Галактике показывает, что галактический диск вращается. Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса, находящегося в созвездии Волосы Вероники. Исследования показали, что Галактика имеет хорошо выраженную спиральную структуру. Спирали представляют собой волны плотности, распространяющиеся в сторону вращения диска Галактики, с  постоянной угловой скоростью.

Звёзды  Галактики.

 

    Вращение звезд Галактики не подчиняется и закону Ньютона. Этот необъяснимый факт привел к новым удивительным открытиям, связанным с понятием темной материи. 

    Наше Солнце расположено между спиральными рукавами Стрельца и Персея, движется со скоростью около 220 км/с, и делает полный оборот вокруг центра Галактики за 200 миллионов лет. За время своего существования Солнце облетело Галактику примерно 30 раз. Скорость вращения Солнца вокруг центра Галактики практически совпадает с той скоростью, с которой в данном районе движутся спиральные рукава. Такая ситуация неординарна для Галактики. Единственное место, где скорости звезд и спиральных рукавов совпадают, - это коротационная окружность и, именно вблизи нее расположено Солнце. Может быть, это обстоятельство дало возможность возникнуть и сохраниться жизни на Земле. Ведь в спиральных рукавах происходят бурные процессы, мощное излучение от которых погубило бы все живое на Земле.  Так что наше периферийное положение по отношению в галактической «столице» можно считать даже привилегированным.

Размеры Галактики.

    Основываясь на результатах своих подсчётов, Гершель предпринял попытку определить размеры Галактики. Он заключил, что наша звёздная система имеет конечные размеры и образует своего рода толстый диск: в плоскости Млечного Пути она простирается на расстояние не более 850 единиц, а в перпендикулярном направлении — на 200 единиц, если принять за единицу расстояние до Сириуса. По современной шкале расстояний это соответствует 7300 х 1700 световых лет.

    Эта оценка в целом, верно, отражает структуру Млечного Пути, хотя она весьма неточна. Дело в том, что кроме звёзд в состав диска Галактики входят также многочисленные газопылевые облака, которые ослабляют свет удалённых звёзд. Первые исследователи Галактики не знали об этом поглощающем веществе и считали, что они видят все её звёзды.

    Истинные размеры Галактики были установлены только в XX в. Оказалось, что она является значительно более плоским образованием, чем предполагали ранее. Диаметр галактического диска превышает 100 тыс. световых лет, а толщина — около 1000 световых лет. По внешнему виду Галактика напоминает чечевичное зерно с утолщением посередине.

Информация о работе Контрольная работа по "Концепции современного естествознания"