Эволюция звезд

Автор работы: Пользователь скрыл имя, 27 Декабря 2010 в 18:16, контрольная работа

Краткое описание

Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики. Чтобы проследить жизненный путь звёзд и понять, как они ста-реют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой; Рождение звёзд – процесс таинственный, скрытый от наших глаз, даже вооруженных телескопом.

Содержание работы

ВВЕДЕНИЕ………………………………………………………...……….…...…3
1. ЭВОЛЮЦИЯ ЗВЕЗД…………………………………………………....……....5
2. РОЖДЕНИЕ ЗВЕЗД ИЗ ГАЗО - ПЫЛЕВЫХ ОБЛАКОВ МЕЖЗВЕЗДНОЙ СРЕДЫ………………………………………………. ……………………..….…..12
3. ЖИЗНЬ ЗВЕЗД И ПРОЦЕССЫ ТЕРМОЯДЕРНОГО СИНТЕЗА В ИХ НЕДРАХ….………………………………………………………………...………15
4. ЗВЕЗДНЫЕ “ОСТАНКИ”: БЕЛЫЕ КАРЛИКИ, НЕЙТРОННЫЕ ЗВЕЗДЫ, ЧЕРНЫЕ ДЫРЫ…………………………………………………………..……….19
4.1 Белые карлики…………………………………………………………………19
4.2 Нейтронные звезды……………………………………………………………21
4.3 Черные Дыры…………………………………………………………………..22
ЗАКЛЮЧЕНИЕ……………………………………………………………..…......27
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………………………....….……28

Содержимое работы - 1 файл

ЭВОЛЮЦИЯ ЗВЕЗД НА СДАЧУ.docx

— 210.40 Кб (Скачать файл)

(М/МC)= (L/LС)0,256 = 3,04 . 10-0,102 M 

     Химический  состав звезды зависит от времени, когда  она образовалась, и от ее положения  в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав которого определялся  космологическими условиями. По-видимому, в нем было примерно 70% по массе  водорода, 30% гелия и ничтожная  примесь дейтерия и лития. В ходе эволюции звезд первого поколения  образовались тяжелые элементы (следующие  за гелием), которые были выброшены  в межзвездное пространство в  результате истечения вещества из звезд  или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

Наиболее  непосредственным указанием на то, что звездообразование в Галактике происходит и в настоящее время, является существование массивных ярких звезд спектральных классов O и B, время жизни которых не может превосходить ~ 107 лет.  
 
 
 
 
 
 
 
 
 

  1. РОЖДЕНИЕ  ЗВЕЗД ИЗ ГАЗО - ПЫЛЕВЫХ ОБЛАКОВ МЕЖЗВЕЗДНОЙ СРЕДЫ
 

     Звездообразование – это процесс рождения звезд  из межзвездного газа, газопылевых  образований, облаков. Процесс звездообразования  продолжается непрерывно, он происходит и в настоящее время.

     Для каждого поколения звезд характерны конкретные условия звездообразования. Кроме того, первые поколения звезд образовывались в основном в области галактического центра, во всем его объеме. В дальнейшем, в связи с тем, что межзвездный газ все больше концентрировался в плоскости Галактики, звездообразование происходило и происходит сейчас в этой галактической плоскости.

     Звезды  образуются не в одиночку, а группами, скоплениями, что является результатом  гравитационной конденсации, сжатия (коллапса) громадных объемов межзвездного газа, газопылевых облаков. Этот процесс хорошо описывается теорией. Кроме того, имеются многочисленные наблюдательные данные рождения звезд. Их число особенно увеличилось с возникновением радио- и инфракрасной астрономии, для диапазонов которых газ и пыль прозрачны.

     Звездообразование начинается со сжатия и последующей  фрагментации (под действием гравитационных сил) протяженных холодных облаков  молекулярного межзвездного газа. Масса газа должна быть такой, чтобы действие сил гравитации преобладало над действием сил газового давления. При современных температурах межзвездного газа (10-30 К) его минимальная масса, которая может конденсироваться, коллапсировать, составляет не менее тысячи масс нашего Солнца. Каждый из образовавшихся фрагментов может в свою очередь разделяться на отдельные фрагменты (так называемая каскадная фрагментация). Последняя серия фрагментов и представляет собой материал, из которого непосредственно формируются звезды.

     По  мере сжатия в таком фрагменте  постепенно выделяются ядро и оболочка. Ядро – это центральная, более плотная и компактная часть, достигшая гидростатического равновесия. Оболочка – это внешняя, протяженная, продолжающая коллапсировать часть газопылевого фрагмента. (Из материала оболочки впоследствии при ее преобразовании в газопылевой диск могут образовываться окружающие звезду планеты.) Процесс конденсации сопровождается возрастанием магнитного поля, ростом давления газа. Долгое время оболочка остается плотной и непрозрачной, что делает рождающуюся звезду невидимой в оптическом диапазоне. (Зато ее можно зафиксировать средствами радио- и инфракрасной астрономии.) Так постепенно формируются протозвезды – грандиозные непрозрачные массы межзвездного газа со сформировавшимся ядром, в которых гравитация уравновешивается силами внутреннего давления.

     С образованием протозвезды рост массы  ее ядра не прекращается. Масса ядра продолжает увеличиваться за счет выпадения газа на ядро из оболочки (аккреция). Силы гравитации растут и разогревают ядро, которое претерпевает качественные изменения, в том числе возрастают его светимость и давление излучения. Затем рост ядра и конденсация газа из оболочки прекращаются. Оболочка постепенно “сдувается” излучением и рассеивается. А ядро со стороны приобретает вид звездного объекта. Этот процесс гравитационного сжатия длится относительно недолго (от сотен тысяч до нескольких десятков млн лет) и заканчивается тогда, когда температура в центре достигает тех значений (10-15 млн градусов), при которых включается другой источник энергии – термоядерные реакции. Сжатие при этом прекращается и процесс звездообразования завершается: протозвезда окончательно превращается в звезду.

     Теория  звездообразования не только описывает  его общий ход, но и позволяет выделить факторы, которые могут замедлять или стимулировать звездообразование. К замедляющим факторам относятся: незначительная масса протозвезды, высокая скорость вращения газопылевого облака, сильное магнитное поле и др. Стимулирующими звездообразование процессами являются: ударные волны, порожденные вспышками сверхновых звезд; ионизационные фронты; столкновение облаков; звездный ветер (поток плазмы от горячих звезд) и др. Например, если масса протозвезды очень мала (менее 0,08 массы Солнца), то ее гравитационное сжатие происходит очень медленно, а температура в ядре никогда не достигает значений, необходимых для начала термоядерной реакции. Такие протозвезды будут сжиматься очень и очень долго (время их гравитационного сжатия превышает время жизни Галактики), постепенно превращаясь в так называемые черные карлики.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  1. ЖИЗНЬ ЗВЕЗД И ПРОЦЕССЫ ТЕРМОЯДЕРНОГО  СИНТЕЗА В ИХ         НЕДРАХ
 

     Звёзды  не останутся вечно такими же, какими мы их видим сейчас. Во Вселенной  постоянно рождаются новые звёзды, а старые умирают. Чтобы понять, как эволюционирует звезда, необходимо проанализировать процессы, протекающие в недрах звезды. А для этого надо знать, как устроены эти недра, каковы их химический состав, температура, плотность, давление. Но наблюдениям доступны лишь внешние слои звёзд – их атмосферы. Проникнуть в глубь даже ближайшей звезды – Солнца – мы не можем. Приходится прибегать к косвенным методам: расчётам, компьютерному моделированию. При этом пользуются данными о внешних слоях, известными законами физики и механики, общими как для Земли, так и для звёздного мира.

     Наблюдения  показывают, что большинство звёзд  устойчивы, т.е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действующие на её вещество внутренние силы уравновешиваются.

     Звезда  – раскалённый газовой шар, а  основным свойством газа является стремление расшириться и занять любой предоставленный  ему объём. Это стремление вызвано  давление газа и определяется его  температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни  расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с  глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.

     Звезда  излучает энергию, вырабатываемую в  её недрах. Температура в звезде распределена так, что в любом  слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется  энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.

     Лучи, испускаемые звездой, получают свою в недрах, где располагается её источник, и продвигаются через всю  толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную  зигзагообразную кривую. Иногда он “блуждает” многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.

     Оценки  температуры и плотности в  недрах звёзд получают теоретическим  путём, исходя из известной массы  звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца – около 15 млн. градусов.

     Строение  звёзд зависит от массы. Если звезда в несколько раз массивнее  Солнца, то глубоко в её недрах происходит интенсивное перемешивание вещества (конвекция), подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую её часть составляет конвективное ядро. Остальная часть звезды сохраняет при этом равновесие. Источник энергии находится в конвективном ядре. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, а его объём уменьшается. Внешние же области звезды при этом расширяются, она увеличивается в размерах, а температура её поверхности падаёт. Горячая звезда – голубой гигант – постепенно превращается в красный гигант.

     Строение  красного гиганта уже иное. Когда  в процессе сжатия конвективного ядра весь водород превращается в гелий, температура в центре повысится до 50-100 млн. градусов и начнется горение гелия. Он в результате ядерных реакций превращается в углерод. Ядро горящего гелия окружено тонким слоем горящего водорода, который поступает из внешней оболочки звезды. Следовательно, у красного гиганта два источника энергии. Над горящим ядром находится протяженная оболочка.

     В дальнейшем ядерные реакции создают  в центре массивной звезды всё  более тяжелые элементы, вплоть до железа. Синтез элементов тяжелее  железа уже не приводит к выделению  энергии. Лишенное источников энергии, ядро звезды быстро сжимается. Это может  повлечь за собой взрыв – вспышку  сверхновой. Иногда при взрыве звезда полностью распадается, но чаще всего, по-видимому, остается компактный объект – нейтронная звезда или черная дыра.

     Вместе  с оболочкой взрыв уносит в  межзвездную среду различные  химические элементы, образовавшиеся в недрах звезды за время её жизни. Новое поколение звезд, рождающихся из межзвездного газа, будет содержать уже больше тяжелых химических элементов.

     Срок  жизни звезды напрямую зависит от её массы. Звезды с массой в 100 раз  больше солнечной живут всего  несколько миллионов лет. Если масса  составляет две – три солнечных, срок жизни увеличивается до миллиарда лет.

     В звездах – карликах, массы которых  меньше массы Солнца, конвективное ядро отсутствует. Водород в них горит, превращаясь в гелий, в центральной области, не выделяющейся из остальной части звезды наличием конвективных движений. В карликах этот процесс протекает очень медленно, и они практически не изменяются в течение миллиардов лет. Когда водород полностью сгорает, они медленно сжимаются и за счет энергии сжатия могут существовать ещё очень длительное время.

     Солнце  и подобные ему звезды представляют собой промежуточный случай. У Солнца имеется маленькое конвективное ядро, но не очень чётко отделённое от остальной части. Ядерные реакции горения водорода протекают как в ядре, так и в его окрестностях. Возраст Солнца примерно 4,5-5 млрд. лет. И за это время оно почти не изменило своего размера и яркости. После исчерпания водорода Солнце может постепенно вырасти в красный гигант, сбросить чрезмерно расширившуюся оболочку и закончить свою жизнь, превратившись в белого карлика. Но это случится не раньше, чем через 5 млрд. лет. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. ЗВЕЗДНЫЕ  “ОСТАНКИ”: БЕЛЫЕ КАРЛИКИ, НЕЙТРОННЫЕ ЗВЕЗДЫ, ЧЕРНЫЕ ДЫРЫ

4.1 Белые  карлики

 
 

     Во  Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд.

     История открытия белых карликов восходит к  началу 19в., когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда, которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса.

     Белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы.

Информация о работе Эволюция звезд