Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 01:35, курсовая работа
Экспертные системы (ЭС) возникли как значительный практический результат в применении и развитии методов искусственного интеллекта (ИИ)- совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод (автоматический перевод с одного естественного языка на другой), распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.
Санкт-Петербургский
государственный
Кафедра
«Информационные системы в
Курсовая
работа
Дисциплина:
Интеллектуальные информационные системы
Тема: Экспертные системы и их использование
Выполнил студент
гр.5074/3
Руководитель
Санкт-Петербург
2011
Введение
Экспертные системы (ЭС) возникли
как значительный практический
результат в применении и
Область ИИ имеет более чем
сорокалетнюю историю развития.
С самого начала в ней
ЭС- это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.
Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличии от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.
При создании ЭС возникает ряд затруднений. Это прежде всего связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят “машиной”. Но эти страхи не обоснованы, т. к. ЭС не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также ЭС неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.
Экспертная система состоит из базы знаний (части системы, в которой содержатся факты), подсистемы вывода (множества правил, по которым осуществляется решение задачи), подсистемы объяснения, подсистемы приобретения знаний и диалогового процессора .
При построении подсистем вывода используют
методы решения задач искусственного
интеллекта.
Глава 1. Экспертные системы, их особенности.
Применение
экспертных систем
1.1. Определение экспертных систем. Главное достоинство и назначение экспертных систем
Экспертные системы (ЭС)- это яркое
и быстро прогрессирующее
ЭС- это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.
ЭС выдают советы, проводят анализ,
выполняют классификацию, дают
консультации и ставят диагноз.
Главное достоинство ЭС- возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.
Практическое применение
1.2. Отличие ЭС от других программных продуктов
Основными отличиями ЭС от
других программных продуктов
являются использование не
входная механизм
информация
вывода
Рис. 1.1. Решение задачи
Качество ЭС определяется
В любой момент времени в системе существуют три типа знаний:
- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.
-
Структурированные
- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.
Все перечисленные выше знания
хранятся в базе знаний. Для
ее построения требуется
Результаты анализов
выбор и ввод
исходных данных
наблюдения
интерпретация
гипотезы
усвоение
Рис.1.2. Схема работы ЭС.
1.3. Отличительные особенности. Экспертные системы первого и второго поколения
1. Экспертиза может проводиться
только в одной конкретной
области. Так, программа,
фигурации систем ЭВМ, не может ставить медицинские диагнозы.
2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульманологии путем замены базы знаний, используемой с тем же самым механизмом вывода.
3. Наиболее подходящая область применения- решение задач дедуктивным методом. Например, правила или эвристики выражаются в виде пар посылок и заключений типа “если-то”.
4. Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос “Почему ?” не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.
5. Выходные результаты являются
качественными (а не
6. Системы, основанные на
Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.