История развития естествознания

Автор работы: Пользователь скрыл имя, 28 Февраля 2012 в 16:31, доклад

Краткое описание

Естествознание — неотъемлемая и важная часть духовной культуры человечества. Знание его современных фундаментальных научных положений, мировоззренческих и методологических выводов является необходимым элементом общекультурной подготовки специалистов в любой области деятельности. Поэтому, изучение естественных наук – важный фактор для подготовки современных образованных специалистов.

Содержание работы

ВВЕДЕНИЕ
1. Общие положения в естествознании
2. Основные этапы истории развития естествознания
2.1. Древнегреческий период
2.2. Эллинистический период
2.3. Древнеримский период античной натурфилософии
2.4. Вклад Арабского мира в развитие естествознания
2.5. Естествознание в средневековой Европе
2.6. Этап, называемый «научной революцией»
3. Возникновение научного эксперимента, как метода исследования
4. Революции в естествознании
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Содержимое работы - 1 файл

история разваития естествознания.docx

— 63.49 Кб (Скачать файл)

Арабский мир дал человечеству много выдающихся ученых и организаторов  науки. Так, например, Мухаммед, прозванный аль-Хорезми (первая половина IX в.) был выдающимся астрономом и одним из создателей алгебры; Бируни (973-1048) — выдающийся астроном, историк, географ, минералог; Омар Хайям (1201— 1274) — философ и ученый, более известный как поэт; Улугбек (XV в.) — великий астроном и организатор науки, один из наследников Тимура, а также Джемшид, Али Кушчи и многие другие ученые.

Аль-Хорезми значительно улучшил таблицы движения планет и усовершенствовал астролябию — прибор для определения положения небесных светил. Бируни со всей решительностью утверждал, что Земля имеет шарообразную форму, и значительно уточнил длину ее окружности. Он также допускал вращение Земли вокруг Солнца. Омар Хайям утверждал, что Вселенная существует вечно, а Земля и другие небесные тела движутся в бесконечном пространстве.

 

2.5. Естествознание в средневековой Европе.

В то же самое время в  Европе читали, главным образом, Библию, предавались рыцарским турнирам, войнам, походам. Была распространена куртуазная литература, посвященная прекрасным дамам и рыцарской любви. Только единицы имели склонность к философии и серьезной литературе времен античности.

Однако естествознание развивалось и в средневековой  Европе, причем его развитие шло  по самым разным путям. Особо необходимо упомянуть поиски алхимиков и  влияние университетов, которые были чисто европейским порождением. Огромное число открытий в алхимии было сделано косвенно. Недостижимая цель (философский камень, человеческое бессмертие) требовала конкретных шагов, и, благодаря глубоким знаниям и скрупулезности в исследованиях, алхимики открыли новые законы, вещества, химические элементы.

С XIII в. в Европе начинают появляться университеты. Самыми первыми  были университеты в Болонье и  Париже. Благодаря университетам возникло сословие ученых и преподавателей христианской религии, которое можно считать фундаментом сословия интеллектуалов.

 

2.6. Этап, называемый «научной революцией».

Периодом «научной революции» иногда называют время между 1543 и 1687 гг.

Первая дата соответствует  публикации Н. Коперником работы «Об обращениях небесных сфер»; вторая — И. Ньютоном «Математические начала натуральной философии».

Все началось с астрономической революции Коперника, Тихо Браге, Кеплера, Галилея, которая разрушила космологию Аристотеля — Птолемея, просуществовавшую около полутора тысяч лет.

Коперник поместил в центр мира не Землю, а Солнце;

Тихо Браге — идейный противник Коперника — движущей силой, приводящей планеты в движение, считал магнетическую силу Солнца, идею материального круга (сферы) заменил современной идеей орбиты, ввел в практику наблюдение планет во время их движения по небу;

Кеплер, ученик Браге, осуществил наиболее полную обработку результатов наблюдений своего учителя: вместо круговых орбит ввел эллиптические он количественно описал характер движения планет по этим орбитам;

Галилей показал ошибочность различения физики земной и физики небесной, доказывая, что Луна имеет ту же природу, что и Земля, и формируя принцип инерции. Обосновал автономию научного мышления и две новые отрасли науки: статику и динамику. Он «подвел фундамент» под выдающиеся обобщения Ньютона, которые мы рассмотрим далее.

Данный ряд ученых завершает Ньютон, который в своей теории гравитации объединил физику Галилея и физику Кеплера.

В течение этого периода  изменился не только образ мира. Изменились и представления о человеке, о науке, об ученом, о научном поиске и научных институтах, об отношениях между наукой и обществом, между наукой и философией, между научным знанием и религиозной верой. Выделим во всем этом следующие основные моменты:

1. Земля, по Копернику, — не центр Вселенной, созданной Богом, а небесное тело, как и другие. Но если Земля — обычное небесное тело, то не может ли быть так, что люди обитают и на других планетах?

2. Наука становится не привилегией отдельного мага или просвещенного астролога, не комментарием к мыслям авторитета (Аристотеля), который все сказал. Теперь наука — исследование и раскрытие мира природы, ее основу теперь составляет эксперимент. Появилась необходимость в специальном строгом языке.

3. Наиболее характерная черта возникшей науки — ее метод. Он допускает общественный контроль, и именно поэтому наука становится социальной.

4. Начиная с Галилея наука намерена исследовать не что, а как, не субстанцию, а функцию.

Научная революция порождает  современного ученого-экспериментатора, сила которого — в эксперименте, становящемся все более и более точным, строгим благодаря новым измерительным приборам. Новое знание опирается на союз теории и практики, который часто получает развитие в кооперации ученых, с одной стороны, и техников и мастеров высшего разряда (инженеров, художников, гидравликов, архитекторов и т.д.) — с другой.

Возникновение нового метода исследования – научного эксперимента оказало огромное влияние на дальнейшее развитие науки.

 

3. Возникновение научного эксперимента, как метода исследования.

Основной метод исследований Нового времени — научный эксперимент, который отличается от всех возможных  наблюдений тем, что предварительно формулируется гипотеза, а все наблюдения и измерения направлены на ее подтверждение или опровержение.

Экспериментальный метод  начал готовить к разработке еще Леонардо да Винчи (1452-1519). Но Леонардо жил за сто лет до этой эпохи, и у него не было соответствующих технических возможностей и условий. Не разработана была также логическая структура экспериментального метода. Эксперименту Леонардо да Винчи недоставало строгости определений и точности измерений, но можно только восхищаться универсальностью ума этого человека, которой восторгались его современники и которая поражает сегодня нас. С методологической точки зрения Леонардо можно считать предшественником Галилея. Помимо опыта он придавал исключительное значение математике. «Лучше маленькая точность, чем большая ложь», — утверждал он».

Начало экспериментальному методу Нового времени положило изобретение двух важнейших инструментов: сложного микроскопа (ок. 1590 г.) и телескопа (ок. 1608 г.). Уже древние греки были знакомы с увеличительной силой линзовых стекол. Но сущность и микроскопа, и телескопа заключается в соединении нескольких увеличительных стекол. По-видимому, первоначально такое соединение произошло случайно, а не под влиянием какой-нибудь руководящей теоретической идеи. Первый микроскоп изобрел, по всей видимости, голландский шлифовальщик стекол Захарий Янсен, первую подзорную трубу — голландский оптик Франц Липперстей.

С появлением телескопов развитие астрономии поднялось на качественно новый уровень. Были открыты (еще Галилеем) четыре наиболее крупных спутника Юпитера, множество новых, не видимых невооруженным взглядом, звезд; было достоверно установлено, что туманности и галактики являются огромным скоплением звезд. Кроме того, были обнаружены темные пятна на Солнце, которые вызвали особые возражения и даже ярость руководителей католической церкви.

К середине XVII в. выдающийся астроном Гевелий изготовил первую карту Луны. Именно он впервые предложил принятые в настоящее время названия темных пятен Луны — океаны и моря. Гевелию удалось наблюдать девять больших комет, что положило начало их систематическому исследованию.

В конце века Тихо Браге усовершенствовал технику наблюдений и измерений астрономических явлений, достигнув предела возможностей использованного им оборудования. Он также ввел, как отмечалось выше,  в практику наблюдения планет во время их движения по небу.

В Новое время, во многом благодаря экспериментальному методу, были объяснены многие довольно простые  явления, над которыми человечество задумывалось в течение многих веков, а также были высказаны идеи, определившие научные поиски на века вперед.

В XVI-XVII вв. наблюдается бурный расцвет анатомических исследований. В 1543—1544 гг. А. Везалий опубликовал книгу «О строении человеческого тела», которая была прекрасно иллюстрирована и сразу же получила широкое распространение. Она считается первым скрупулезным описанием анатомии из всех известных человечеству. Но это было, если так можно выразиться, развитием статических представлений о человеческом теле.

У. Гарвей (1578—1657) продвинул  дело гораздо дальше, начав развитие биологических аспектов механистической  философии. Он заложил основы экспериментальной физиологии и правильно понял основную схему циркуляции крови в организме. Гарвей воспринимал сердце как насос, вены и артерии — как трубы. Кровь он рассматривал как движущуюся под давлением жидкость, а работу венозных клапанов уподоблял клапанам механическим. В спорах со своими коллегами Гарвей утверждал, что «никакого жизненного духа» (эфирного тела) ни в каких частях организма не обнаружено.

 

4. Революции в естествознании.

В истории естествознания процесс накопления знаний сменялся периодами научных революций, когда происходила ломка старых представлений и взамен их возникали новые теории.

Крупные научные революции связаны с такими достижения человеческой мысли, как:

1. Учение о гелиоцентрической системе мира Н. Коперника;

2. Создание классической механики И. Ньютоном;

3. Ряд фундаментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволюционного развития природы и установившие тесную взаимосвязь многих явлений природы;

4. Крупные открытия в начале XX столетия в области микромира, создание квантовой механики и теории относительности.

Рассмотрим эти основные достижения.

1. Польский астроном Н. Коперник в труде «Об обращении небесных сфер» предложил гелиоцентрическую картину мира вместо прежней птолемеевой (геоцентрической). Она явилась продолжением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является естественным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы.

«Трудно переоценить значение и влияние гелиоцентрической  картины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса».

2. Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эффективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразующей мир. К тому же она определенным образом формировала мировоззрение ученых. Вступала в силу механистическая картина мира.

3. Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени.

Однако его научные  результаты разнообразны и глубоки. Он исследовал свободное падение  тел и установил, что скорость свободного падения тел не зависит от их массы (в отличие от Аристотеля) и траектория брошенного тела представляет собой параболу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической картины мира, утверждению которой способствовали передовые ученые того времени.

4. Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропорционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один закон, предложенный Ньютоном, закон всемирного тяготения, звучит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы.

«Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и  расстояниями между ними и, таким  образом, является идеализацией реального  физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины  мира. Его теория использовала строгий  математический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ».

Информация о работе История развития естествознания