Естественнон научная картина мира

Автор работы: Пользователь скрыл имя, 22 Марта 2012 в 19:15, доклад

Краткое описание

осмос (от греч. hosmos - мир) - термин, идущий из древнегреческой философии для обозначения мира как структурно организованного и упорядоченного целого. Космосом греки называли Мир упорядоченный, прекрасный в своей гармонии в отличие от Хаоса - первозданной сумятицы. Сейчас под космосом понимают все находящееся за пределами атмосферы Земли. Иначе космос называют Вселенной (место вселения человека).

Содержимое работы - 1 файл

sem7s.doc

— 142.50 Кб (Скачать файл)

Мы живем в эволюционирующей Вселенной. Появление жизни и разума в нашей Вселенной стало возможным на определенном этапе ее эволюции. Если бы эволюция космический материи происходила несколько иначе, то не было бы ни наблюдаемой структуры Вселенной, ни нас как наблюдателей.

По существу, в современной космологии появился новый взгляд на Вселенную, новый принцип. Согласно известному ранее космологическому принципу, Вселенная выглядит почти одинаково из любой точки пространства (идеальный принцип требует, чтобы Вселенная выглядела совершенно одинаково и в любой момент времени). Теперь же к этому принципу добавляется новый - его называют антропным принципом. Сформулировать его можно разным способом, например: это принцип отбора только тех начальных условий (из всех имеющихся на ранней стадии Вселенной), которые совместимы с существованием разумной жизни.

Антропный принцип не есть новый фундаментальный физический закон. Принцип вообще не эквивалентен закону, а представляет собой один из уровней философского основания науки.

Вопрос №5

Задолго до первых попыток сосчитать звезды, наблюдатели разделили все небо на некоторые участки, проложив между ними невидимые границы. Участки, включающие в себя определенную группу звезд законченного рисунка, назвали созвездием и присвоили ему имя, которое часто давалось из желания увековечить имя бога или любимого героя. У разных цивилизаций границы созвездий и их названия были разными, что отражало присущие им национальные особенности. Мы пользуемся достижением древних цивилизаций Средиземноморья. Легенды, мифы об их героях и богах отражены в названиях современных созвездий и планет. Гомер в «Одиссее», написанной 3 тысячи лет назад, упоминает Большую Медведицу, Орион, Волопас и Плеяды. По ним ориентируется Одиссей, плывя к Итаке. В названиях планет тоже присутствуют греко-римские имена богов: Меркурий - Гермес, Венера — Афродита, Марс — Арес, Юпитер — Зевс, Сатурн — Крон, Уран («небо»), Нептун — Посейдон, Плутон — Аид. Гея — богиня, породившая жизнь на нашей планете. Во II веке н. э. грек Птолемей, работавший в Египте, в небольшой обсерватории в местечке Канопус под Александрией, в известном труде «Альмагест» описывает 48 созвездий: северные — Кассиопея, Возничий, Цефей, Большая и Малая Медведицы, Волопас, Змееносец, Геркулес, Лира, Орел, Пегас, Андромеда и другие; и южные — Эридан, Орион, Большой Пес, Арго, Южная Рыба, Гидра, Чаша, Ворон, Центавр, Волк, Жертвенник, Кит, Заяц.

О Большой и Малой Медведицах существует много легенд. Вот одна из них. Когда-то в незапамятные времена, у царя Ликаон, правившего страной Аркадией, была дочь по имени Каллисто. Красота её была столь необыкновенной ,что она рискнула соперничать с Герой — богиней и супругой всемогущего верховного бога Зевса. Ревнивая Гера в конце концов отомстила Каллисто: пользуясь своим сверхъестественным могуществом, она превратила её в безобразную медведицу. Когда сын Каллисто, юный Аркад, однажды возвратившись с охоты, увидел у дверей своего дома дикого зверя, он ничего не подозревая, чуть не убил свою мать-медведицу. Этому помешал Зевс — он удержал руку Аркада, а Каллисто навсегда взял к себе на небо, превратив в красивое созвездие - Большую Медведицу. В Малую Медведицу заодно была превращена и любимая собака Каллисто. Не остался на Земле и Аркад: Зевс и его превратил в созвездие Волопаса, обречённого навеки сторожить в небесах свою мать.

Украшением нашего северного неба, несомненно, является созвездие Ориона. Его можно наблюдать с конца ноября и всю зиму в южной части неба. Орион — охотник, поэтому в небе его сопровождают Большой Пес (слева внизу) и Малый Пес (слева сверху). Рядом с Орионом находится Заяц. По одной из легенд, Орион — сын бога морей Посейдона, могучий гигант, охотник, который убивал всех зверей без исключения. За это богиня Артемида, покровительница животных, и убила страстного охотника, наслав на нее Скорпиона. На небе эти созвездия как бы играют в прятки: как только появляется Скорпион, Орион скрывается за горизонтом в противоположной части неба. Наиболее яркой звездой в созвездии Ориона является Ригель - голубовато-белая звезда, другая яркая звезда — Бетельгейзе — красного цвета. Альфа Большого Пса — великолепная звезда Сириус. Его всегда сопровождают Гончьи Псы — Большой и Малый. Они всегда рядом.

Все эти легенды живут уже много столетий и кажется что так будет всегда, но все в мире меняется. Так древние астрономы считали, что звезды, словно серебряные гвозди, вбитые в небесные купол, и при его вращении узоры в созвездиях, составленные огоньками звезд, не нарушаются. На самом деле звезды движутся в пространстве, и на нашем небосклоне они перемещаются друг относительно друга, хотя заметить перемещение очень трудно. Но через многие тысячелетия характерные контуры могут измениться.
В настоящее время под созвездиями подразумевают не выделяющиеся группы звезд, а участки звездного неба, так что все звезды (как яркие, так и слабые) причислены к созвездиям. Современные границы и названия созвездий утверждены в 1922 г. на I съезде Международного астрономического союза (MAC). Все небо разделили на 88 созвездий, из которых 31 находится в северном небесном полушарии, а 48 — в южном. Остальные 9 созвездий (Рыбы, Кит, Орион, Единорог, Секстант, Дева, Змея, Змееносец и Орел) расположены в обоих небесных полушариях.
Как я уже говорил все в мире меняется и скоро на небе могут появятся новые звезды, которые также объединят в созвездия и их назовут уже нашими именами, т.к. именно мы увидим их, и захотим увековечить для своих потомков.

 

Вопрос №6

 

Во Вселенной существуем множество различных звезд. Большие и маленькое, горячие и холодные, заряженные и не заряженными. Одной из классификаций звезд является спектральная классификация. Согласно этой классификации звезды относят в тот или иной класс согласно их спектру. Спектральная классификация звезд служит многим задачам звездной астрономии и астрофизики. Качественное описание наблюдаемого спектра позволяет оценить важные астрофизические характеристики звезды, такие как эффективная температура ее поверхности, светимость и, в отдельных случаях, особенности химического состава.

Находясь на различных стадиях своего эволюционного развития звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами.

Звезда могут наблюдаться красным гигантом в момент звездообразования и на поздних стадиях развития. На ранней стадии развития звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией. На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга — Рассела: этот этап длится ~ 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезда гигант имеет сравнительно низкую температура поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Звезды карлики являются противоположностью гигантов и включают в себя несколько различных подвидов:

        Белый карлик - проэволюционировавшие звезды с массой не превышающей 1,4 солнечных массы, лишенные собственных источников термоядерной энергии. Диаметр таких звезд может быть в сотни раз меньше солнечного, а потому плотность может быть в 1 000 000 раз больше плотности воды.

        Красный карлик — маленькая и относительно холодная звезда главной последовательности, имеющая спектральный класс М или верхний К. Они довольно сильно отличаются от других звезд. Диаметр и масса красных карликов не превышает трети солнечной (нижний предел массы — 0,08 солнечной, за этим идут коричневые карлики).

        Коричневый карлик — субзвездные объекты с массами в диапазоне 5—75 масс Юпитера (и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

        Субкоричневые карлики или коричневые субкарлики — холодные формирования, по массе лежащие ниже предела коричневых карликов. Их в большей мере принято считать планетами.

        Черный карлик - остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Кроме перечисленных, существует еще несколько продуктов эволюции звезд:

        Нейтронная звезда. Звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Плотность таких звезды может достигать 1000 000 000 000 плотностей воды. А магнитное поле во столько же раз больше магнитного поля земли. Такие звезды состоят в основном из нейтронов, плотно сжатых гравитационными силами. Часто такие звезды представляют собой пульсары.

         

        Новая звезда. Звезды, светимость которых внезапно увеличивается в 10000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызываю вспышку светимости.

        Сверхновая звезда это звезда, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

              Двойная звезда - это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс. Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой. В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам - колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Цефеиды, это переменные звезды, названные так по характерному члену этого типа звезд дельта Цефея. Цефеиды - пульсирующие звезды гиганты. Их периоды заключены в пределах от 1,5 до 50 суток. Цефеиды присутствуют как в Галактике, так и во внегалактических звездных системах - Магеллаповых Облаках и туманности Андромеды. Благодаря цефеидам было измерено точное расстояние до Туманности Андромеды. Амплитуды колебаний блеска цефеид разнообразны. Так, например, Полярная звезда (а Малой Медведицы) - цефеида с периодом, равным Зd,969754, и малой амплитудой колебания блеска: от 2,64 в минимуме до 2,50 в максимуме. У других цефеид амплитуды могут достигать полутора звездных величии. Синхронно с блеском изменяются температура фотосферы, показатели цвета и лучевые скорости, а следовательно, и радиусы фотосферы и атмосферы, в которой возникают спектральные линии. К настоящему времени в Галактике известно около 1000 цефеид. Их изучение и статистическое сопоставление их свойств показало, что совокупность цефеид не однородна по своему составу. Пришлось разделить ее на группы - подклассы. Наиболее многочисленна группа звезд, получивших название дельта-цефеиды, их часто называют классическими цефеидами. Для этих цефеид (к числу которых принадлежит и сама дельта Цефея) характерна зависимость между периодом и формой кривой блеска, открытая и изученная Э. Герцшпрунгом. У цефеид с периодами в пределах от 1,5 до 5 суток кривая изменения блеска гладкая. При более продолжительных значениях периода появляется<горбик> на нисходящей ветви кривой блеска, который постепенно перемещается к максимуму, при периоде около 10 суток совмещается с максимумом, а затем проявляется на восходящей ветви кривой в виде задержки подъема блеска. Таким образом, по величине периода и форме кривой блеска легко отличить дельта-цефеиду от других объектов.

У цефеид меняются показатель цвета и спектральный класс. Мы видим, что светимости делъта-цефеид велики, а их спектральные классы F, G и К. Это свидетельствует о том, что на диаграмме Герцшпрунга-Рессела они относятся к желтым сверхгигантам.

Вопрос 7

ПУЛЬСАР - НЕЙТРОННАЯ ЗВЕЗДА

К моменту открытия пульсаров было уже известно, что конечным продуктом эволюции звёзд являются компактные массивные объекты, плотность которых во много раз больше, чем у обычных звёзд.

После того как звезда исчерпает свои источники энергии, она начинает остывать и сжиматься. При этом физические свойства газа кардинально меняются, так что его давление сильно возрастает. Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды (гравитационный коллапс) прекращается. Она переходит в устойчивое состояние белого карлика. Но если масса превышает некоторое критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтральные частицы - нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов, которые настолько тесно прижаты друг к другу, что огромная звёздная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливает­ся. Плотность этого шара - нейтронной звезды - чудовищно велика даже по сравнению с плотностью белых карликов: она может превышать 10 млн т/см?.

Существование нейтронных звёзд предсказал ещё в 1932 г. советский физик Лев Давидович Ландау, а в 1934 г. работавшие в США Вальтер Бааде и Фриц Цвикки предположили, что эти звёзды являются остатками взрывов сверхновых. Естественно, после того как обнаружилась связь пульсаров с остатками вспышек сверхновых, было высказано мнение, что пульсары и нейтронные звёзды - это одни и те же объекты.

Каким же образом пульсары излучают электромагнитные волны? При сжатии звезды увеличивается не только её плотность. Согласно закону сохранения момента количества движения, с уменьшением радиуса звезды растёт скорость её вращения. При коллапсе огромной массивной звезды до размеров порядка несколь­ких десятков километров период вращения уменьшается до сотых и даже тысячных долей секунды, т. е. до характерных периодов переменности пульсаров. Помимо этого сильно уплотняется и магнитное поле звезды.

На поверхности нейтронной звезды, где нет такого большого давления, нейтроны могут опять распадаться на протоны и электроны. Сильное магнитное поле разгоняет лёгкие электроны до скоростей, близких к скорости света, и выбрасывает их в околозвёздное пространство. Заряженные частицы движутся только вдоль магнитных силовых линий, поэтому электроны покидают звезду именно от её магнитных полюсов, где силовые линии выходят наружу. Перемещаясь вдоль силовых линий, электроны испускают излучение в направлении своего движения. Это излучение представляет собой два узких пучка электромагнитных волн. Если магнитная ось звезды (так же, как и Земли) не совпадает с осью вращения, то пучки излучения будут вращаться с периодом, равным периоду вращения звезды. Мы наблюдаем это излучение в том случае, когда, описывая окружность в пространстве, лучи пробегают по земной поверхности. Так что название «пульсары» не совсем точно: они не пульсируют, а вращаются.

Информация о работе Естественнон научная картина мира