Естесственно научные основы инновационных технологий

Автор работы: Пользователь скрыл имя, 20 Февраля 2012 в 22:22, доклад

Краткое описание

Естественными науками называют совокупность наук о природе. К естественным наукам относится довольно много наук и чтобы понять структуру естествознания необходимо обратиться к предмету изучения. Естественные науки изучают природу пространства материи времени, закономерности и связи явлений природы, как общего характера, так и специфических, характерных лишь для конкретного узкого класса явлений. А иногда и одного явления. Так как основное свойство материи – движение, то можно сказать, что предметом естествознания является движущаяся материя: от самых простых форм движения до самых сложных. Цели естествознания – двоякие: 1) находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления; 2) раскрывать возможность использования

Содержимое работы - 1 файл

еНОИИИИТ.doc

— 571.00 Кб (Скачать файл)

Наиболее устойчивыми с энергетической точки зрения оказываются ядра  элементов  средней  части  таблицы  Менделеева.  Тяжелые  и  легкие ядра  менее  устойчивы.

Это  означает,  что  энергетически  выгодны  два ядерных   процесса:1)  деление   тяжелых   ядер   на   более   легкие   (цепная  реакция);2)   слияние легких ядер и образование более тяжелых (синтез ядер). Оба  процесса  практически реализованы  в  виде  соответственно  цепной реакции деления и термоядерного синтеза. Они сопровождаются выделением   огромного   количества   энергии.

 

31.1 Основные научные достижения в биологии и генетике.

Первая попытка положить основание научного подхода к биологическим наукам принадлежит Аристотелю, кот. собрал накопившиеся до его времени фактич-й материал и дополнил его множеством собственных наблюдений.

Значительный подъем биологических наук наблюдается в XVI веке. Большое значение имеет применение микроскопа, изобретенного в конце XVI века, открывшего целый мир. Джон Рэ установил понятие вида, подготовив обновление систематики животных. Гарвей - англ-й врач и анатом в 1629 г. опубликовал свои взгляды на кровообращение, положившее начало современной физиологии. Продолжатель Гарвея Галлер - швейцарский естеств-ль разработал систему классиф-и растений. Бонне - выдающийся швейц-й естест-тель сформулировал общность бесполого размножения. Огромную роль в развитии биол-х наук сыграл Линней - один из основателей Стокгольмской академии наук и ее первый президент. Дарвин отчетливо сформулировал идею естественного отбора.

Ламарк первым вполне ясно и определенно высказался в пользу изменчивости видов. Господ-м направлением к концу XIX в. стал дарвинизм.Основы современной генетики заложены Г. Менделем, кот. сформулировал з-ны дискретной наследственности. Морган обосновал хромосомную теорию наследственности. Вавилов - основоположник учения о биолог-х основах селекции и центрах происхождения культурных растений. Лысенко возродил в советской биологии ламаркистскую теорию наследственности.Генетическая инженерия — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Генетическая инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путем использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Основные этапы решения генноинженерной задачи следующие:

Получение изолированного гена.Введение гена в вектор для переноса в организм.Перенос вектора с геном в модифицируемый организм.

Преобразование клеток организма.Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Клонирование, в биологии — метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения.

Для бактерий клонирование является единственным способом размножения. Однако обычно, когда говорят о клонировании бактерий, имеют в виду намеренное размножение какой-то бактерии, выращивание её клона, культуры. У растений естественное клонирование происходит при различных способах вегетативного размножения. У животных клонирование происходит при амейотическом партеногенезе и различных формах полиэмбрионии.

Благодаря фундаментальным биологическим открытиям 19-20в— стало возможным то, что ныне носит название молекулярного клонирования. Это технология клонирования наименьших биологических объектов — молекул ДНК, их частей и даже отдельных генов.

Наибольшее внимание учёных и общественности привлекает клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Создавая особые условия и вмешиваясь в структуру ядра клетки специалисты заставляют развиваться её в нужную ткань или даже в целый заранее намеченный организм.

Различают полное и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном — организм воссоздаётся — соответственно — не полностью.

 

31.2 Радиоактивность и закон радиоактивного распада.

радиоакти́вный распа́д — явление спонтанного превращения атомного ядра в другое ядро или ядра. Радиоактивный распад сопровождается испусканием одной или нескольких частиц (например, электронов, нейтрино, альфа-частиц, фотонов). Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы

Радиоактивность открыта в 1896 г. А. Беккерелем, который обнаружил проникающее излучение солей урана, действующее на фотоэмульсию. Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу — урану.

В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Э. Резерфорд экспериментально установил (1899), что соли урана испускают лучи трёх типов, которые по-разному отклоняются в магнитном поле:

             лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами;

             лучи второго типа отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц (в противоположную сторону), их назвали β-лучами;

             лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением.

Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.

1.                 α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He). α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений).

2.                 β-распад — это проявление слабого взаимодействия. β-распад (точнее, бета-минус-распад, β − -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино. β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино

3.                 γ-излучение-испускание возбужденным ядром квантов света высокой частоты. Параметры ядра не изменяется, ядро переходит в состояние с меньшей энергией.

 

32.1Строение ДНК и РНКВ зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или 2-дезоксирибоза, различают рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).В главную (сахарофосфатную) цепь РНК входят остатки рибозы, а в ДНК – 2-дезоксирибозы.Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин и тимин. Состав РНК отличается тем, что вместо тимина присутствует урацил. Молекулярная масса ДНК достигает десятков миллионов а.е.м. Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.

При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру. Первичная структура нуклеиновых кислот – это нуклеотидный состав и определенная последовательность нуклеотидных звеньев в полимерной цепи.

В сокращённом однобуквенном обозначении эта структура записывается как ...– А – Г – Ц –... Под вторичной структурой нуклеиновых кислот понимают пространственно упорядоченные формы полинуклеотидных цепей. Вторичная структура ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль. Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.  Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом, ТИМИН (Т) комплементарен АДЕНИНУ (А), ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).Комплементарность оснований определяет комплементарность цепей в молекулах ДНК.Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:   молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи   молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.Вторичная структура РНК. В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы (вторичная структура РНК зависит от их биологических функций).
Основная роль РНК – непосредственное участие в биосинтезе белка. Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль в образовании белковых макромолекул: информационные (матричные) РНК передают закодированную в ДНК информацию о структуре белка от ядра клетки к рибосомам, где и осуществляется синтез белка; транспортные РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому; молекулы РНК этого типа "узнают" по соответствующим участкам цепи информационной РНК, какие аминокислоты должны участвовать в синтезе белка; рибосомные РНК обеспечивают синтез белка определенного строения, считывая информацию с информационной (матричной) РНК.

32.2Отличие живого от неживого.

Признаки живых организмов.1. Способность к обмену веществ с окружающейсредой.Процессы:питание,дыхание,выделение.Обмен веществ обеспечивает постоянство химического состава и строения всех частей организма.2.Самовоспроизведение.Благодаря этому крупные молекулы, органоиды клетки, сами клетки и организмы сходны по строению со своими предшественниками (живым организмам свойственны наследственность и изменчивость).3.Развитие – приобретение новых индивидуальных свойств организма.4.Рост – увеличение массы, обусловленное репродукцией.5. Раздражимость – избирательная реакция на внешнее воздействие.6.аморегуляция – постоянство структурной организации и химического состава внутренней среды.7. Дискретность строения (вид состоит из особей, клетка состоит из органоидов, органоиды – из молекул, организм – из органов).8. Способность к историческому развитию и изменение от простого к сложному. Этотпроцесс называется эволюцией. В результате эволюции возникло все

33.1Сознание и интеллект. Человек и эмоции.

Восприятие у человека включает в себя осознание, осмысление предметов, их свойств и отношений, основанное на вовлечении каждый раз вновь  получаемого  впечатления  в  систему  уже  имеющихся  знаний. Мы воспринимаем вещи как бы суммарно.

Процессы ощущения и восприятия оставляют после себя «следы» в мозгу, суть которых состоит в способности воспроизводить образы предметов,  которые  в  данный  момент  не  воздействуют  на  человека.

Содержание когнитивной сферы составляют познавательные способности, интеллектуальные процессы получения знаний и результаты познавательной деятельности, т.е. сами знания.

Традиционно в структуре сознания выделяют две основные познавательные способности человека: рациональную и сенситивную.

Рациональная познавательная способность — это способность человека к формированию понятий, суждений и умозаключений, именно она считается ведущей в когнитивной сфере.

Сенситивная познавательная способность — это способность к ощущениям, представлениям и восприятию, которые выступают основой для рациональных знаний.

Помимо интеллекта и сенситивной способности, в познавательную сферу входят внимание и память. Способность мозга запечатлевать, сохранять воздействие или сигналы внешней среды и в нужный момент воспроизводить их называется памятью.

Внимание — это сосредоточенность, избирательная познавательная направленность сознания, нацеленная на определенный объект, значимый в настоящее время.

На основе интеллекта, способности к ощущениям и памяти формируются чувственные и понятийные образы, которые и составляют содержание когнитивной сферы.

Огромную роль в структуре сознания играют эмоции — все положительные и отрицательные реакции человека на воздействие внешних и внутренних раздражителей, имеющие выраженную субъективную окраску и охватывающие все виды чувств, среди которых наиболее известными являются тревога, боль, удовольствие, радость и др. Эмоциональная сфера сознания представляет собой сферу потребностей, интересов и целей.

Элементами эмоциональной сферы выступают: аффекты, элементарные эмоции, связанные с сенсорными реакциями, и чувства. Все эти разнопорядковые явления объединяются одним понятием — «эмоции».

Эмоция — это отражение ситуации в форме психического переживания и оценочного отношения к ней. Эмоциональная сфера сознания также участвует в познавательном процессе, повышая или снижая его эффективность.

Волевая сфера сознания представлена мотивами, интересами и потребностями в единстве со способностью достигать цели. Главный элемент этой сферы — воля, т.е. способность человека к достижению поставленных целей.

 

 

33.2 Мутации и их роль в эволюции.

Мутация — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящие под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора. Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении — изучения происхождения и родственных связей различных таксонов, в том числе и человека. Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория «молекулярных часов» исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества

Информация о работе Естесственно научные основы инновационных технологий