Автор работы: Пользователь скрыл имя, 02 Ноября 2012 в 11:29, лабораторная работа
Ниже линии GS в результате полиморфного превращения железа часть аустенита превращается в феррит с последующим перераспределением углерода между этими фазами. На линии SE из аустенита начинает выделяться избыточный углерод с образованием вторичного цементита. На линии РQ из феррита выделяется третичный цементит. Во всех сплавах правее точки Р при небольшом переохлаждении до температур ниже 727 °С аустенит эвтектоидного состава (0,8 % С) распадается на эвтектоидную смесь феррита и цементита, называемую перлитом, причем цементит может быть в виде пластинок или зерен (Приложение, рис. 4).
11. Чем отличается структура стали У12 после закалки от температуры немного выше Ас1 от структуры этой же стали после закалки от температуры выше Ас3?
12. Чем отличается сорбит от троостита?
13. Как влияет повышение
14. Что является обязательным результатом закалки?
15. Каков механизм перлитного превращения?
16. От чего зависит
17. Как называется пересыщенный
твердый раствор углерода в a-
18. Как изменяются свойства
19. Чем объясняется высокая
20. Объясните, почему для
21. Почему при закалке необходимо охлаждать сталь со скоростью выше критической?
22. Что такое критическая
23. Что представляет собой С-
24. Чем объясняется устойчивость
и неустойчивость аустенита в
различных температурных
25. Чем отличается мартенситное превращение от перлитного?
26. По какому механизму
ЛАБОРАТОРНАЯ РАБОТА № 9
ОТПУСК ЗАКАЛЕННОЙ УГЛЕРОДИСТОЙ СТАЛИ
Цель работы
Оборудование и материалы для выполнения работы
Порядок выполнения лабораторной работы
Основные положения
Как было установлено в лабораторной работе «Закалка углеродистых сталей», закаленные стали имеют высокие твердость и прочность, но очень низкие пластические свойства. То есть, сталь в закаленном состоянии очень хрупка и ненадежна в эксплуатации. Причиной высокой твердости и хрупкости является пересыщение твердого раствора на основе a-Fe углеродом, искажение его кристаллической решетки и появление дислокаций, компенсирующих эти искажения. Для изменения таких свойств стали применяют следующую обязательную операцию термообработки – отпуск. Отпуск – это нагрев закаленной стали ниже критических температур, с целью придания стали необходимых эксплуатационных свойств и уменьшения внутренних напряжений после закалки.
Пересыщенный твердый раствор углерода в a-Fe (мартенсит) обладает большим запасом свободной энергии и поэтому не является стабильным. Следовательно, в закаленной стали должны протекать процессы, приводящие систему к более устойчивому состоянию, т. е. углерод должен выделяться из решетки мартенсита. Эти процессы идут и при комнатной температуре, но с бесконечно малой скоростью. При нагреве закаленной стали скорость диффузии увеличивается: чем выше температура, тем выше подвижность атомов углерода. Таким образом, происходит распад пересыщенного твердого раствора с образованием равновесных фаз: карбидов и феррита. Рассмотрим последовательно этапы распада мартенсита при нагреве.
При нагреве до 150 °С скорость распада мартенсита ввиду малой подвижности атомов настолько мала, что заметных изменений в строении закаленной стали не наблюдается даже с применением весьма точных методов исследования.
При более высоких температурах нагрева (200-250 °С) начинается выделение углерода из решетки мартенсита и образование очень мелких карбидов, связанных с мартенситом. Частичное уменьшение концентрации углерода в твердом растворе снижает тетрагональность решетки мартенсита, поэтому твердость и прочность стали должны уменьшаться. Однако образующиеся очень мелкие карбиды оказывают сопротивление движению дислокаций под действием приложенных нагрузок, поэтому прочность почти не снижается.
Процесс распада мартенсита завершается
при нагреве до температур
400-450 °С. Чем выше температура, тем более интенсивно
происходит распад, так как скорость диффузии
углерода возрастает. Мартенсит превращается
в мягкий феррит, карбиды немного укрупняются,
однако все еще остаются мелкими и являются
препятствием для движения дислокаций.
Сталь с такой структурой имеет высокие
прочностные и пластические характеристики,
особенно высокий предел текучести.
При температурах выше 550-600 °С идет процесс укрупнения частиц карбидов, они приобретают округлую форму. Первый процесс называется коагуляцией, второй – сфероидизацией. Структура будет состоять из зерен феррита и крупных, сферической формы, карбидов. Сталь обладает высокой вязкостью и высокими пластическими свойствами при достаточной прочности.
В зависимости от процессов, происходящих при отпуске, и от изменений структуры и свойств (рис. 1) различают три вида отпуска:
1) низкотемпературный отпуск – от 160 до 250 °С;
2) среднетемпературный отпуск – от 350 до 450 °С;
3) высокотемпературный отпуск – от 500 до 600 °С.
Низкий (низкотемпературный) отпуск применяется для деталей, от которых требуются высокие твердость и износостойкость. Низкий отпуск назначается для повышения вязкости и пластичности стали без заметного снижения твердости. Этот отпуск применяется, в основном, для режущих и мерительных инструментов. При таком отпуске получается структура, состоящая из менее напряженного, чем после закалки, мартенсита и очень мелких карбидов. Такая структура называется мартенсит отпуска.
Средний (среднетемпературный) отпуск применяется для изделий, от которых требуется высокие упругие свойства. Мелкие кристаллы цементита игольчатой формы, образующиеся при таком отпуске, являются большим препятствием для дислокаций, что обеспечивает высокую упругость и прочность стали. В результате отпуска сильно повышается предел текучести стали и незначительно снижается предел прочности. Структура, получаемая при среднем отпуске, называется троостит отпуска. Она состоит из мелких зёрен феррита и игольчатых кристаллов цементита. Такому отпуску подвергают пружины, рессоры, торсионы и другие детали, которые работают при знакопеременных нагрузках и должны быстро восстанавливать свою форму после деформации. Обычно для изготовления упругих элементов используют стали с содержанием углерода от 0,5 до 0,7 %, как углеродистые, так и легированные. Эти конструкционные стали выделены в особую группу рессорно-пружинных сталей.
Высокий (высокотемпературный) отпуск применяют для ответственных деталей машин с высокой надёжностью, испытывающих при эксплуатации сложные виды нагружения: статические, ударные и знакопеременные нагрузки. Структура после высокого отпуска состоит из более крупных зерен феррита и довольно крупных кристаллов цементита округлой формы и называется сорбит отпуска. Высокий отпуск обеспечивает максимальную пластичность и ударную вязкость в сочетании с достаточной прочностью.
Рис. 1. Влияние температуры отпуска на механические свойства
закаленной углеродистой стали
Закалка в сочетании с высоким отпуском носит название улучшение. Такому виду обработки подвергается особая группа конструкционных сталей, носящая название улучшаемые стали. Они могут быть углеродистыми и легированными, содержание углерода от 0,3 до 0,5 %. Улучшение конструкционных сталей позволяет повысить конструктивную прочность деталей (понизить чувствительность к надрезам и перекосам, к переходам от одного сечения детали к другому, к изменению размеров детали и т. д.).
Влияние температуры отпуска на механические свойства закаленной углеродистой стали представлено на рис. 1.
В табл. 1 приведены данные о влиянии термической обработки на механические свойства конструкционной углеродистой стали с 0,45 % углерода в отожженном состоянии, а также после закалки и отпуска при 300 °С (средний отпуск) и при 600 °С (высокий отпуск).
Таблица 1
Термическая обработка |
Механические свойства | ||||
sВ, МПа |
s0,2, МПа |
d, % |
Y, % |
КСU, Дж/см2 | |
Отжиг при 850 °С |
650 |
450 |
20 |
6 |
60 |
Закалка с 850 °С в воде и отпуск при 300 °С |
1080 |
890 |
10 |
52 |
75 |
Закалка с 850 °С в воде и отпуск при 600 °С |
750 |
520 |
17 |
68 |
160 |
Данные табл. 1 говорят о том,
что сталь в улучшенном состоянии
имеет более высокие
Кроме того, из табл. 1 видно, что после
среднетемпературного отпуска закаленная
конструкционная сталь
Методические указания по выполнению работы
Таблица 2
№ п/п |
Марка стали |
Твердость после закалки, НRС |
t отпуска, °C |
Время нагрева и выдержкиt, мин. |
Твердость после отпуска, НRС |
Структура |
Содержание отчета
Контрольные вопросы