Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 13:05, реферат
Как человек натыкается на странный для него камень красноватого оттенка и начинает стучать по нему своим топором. Мы можем увидеть, как из обрабатываемого куска меди постепенно появляется копия топора каменного, который затем будет выброшен за ненадобностью. Так медный век подошёл к колыбели человечества, так прогресс набирал свою скорость.
Медь, использовавшаяся на заре человечества и сопровождавшая его на протяжении тысячелетий, используется и по сей день. В современном мире, она занимает видное место, равно как и её сплавы, речь о которых ещё зайдёт позже. В моём реферате была предпринята попытка предоставить исчерпывающие ведения по данной теме. Надеюсь, мне это удалось.
Введение.....................................................................................................3
История меди.............................................................................................4
Физические и химические свойства меди...............................................5
Физические свойства.................................................................................5
Электропроводимость...............................................................................6
Характеристики основных физико-механических свойств меди.........6
Химические свойства................................................................................8
Отношение к кислороду............................................................................8
Взаимодействие с водой............................................................................9
Взаимодействие с кислотами....................................................................9
Отношение к галогенам и некоторым другим неметаллам...................10
Оксид меди.................................................................................................10
Гидроксиды меди.......................................................................................12
Сульфаты.....................................................................................................12
Карбонаты...................................................................................................13
Комплексообразование..............................................................................13
Качественные реакции на ионы меди.......................................................13
Сплавы.........................................................................................................13
Латуни..........................................................................................................13
Бронзы..........................................................................................................15
Медноникелевые сплавы............................................................................16
Заключение..................................................................................................18
Список литературных источников:............................................................19
Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:
Взаимодействие с кислотами
Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием
соответствующих солей:
Отношение к галогенам и некоторым другим неметаллам
Qобразования (CuCl) = 134300 кДж
Qобразования (CuCl2) = 111700 кДж
Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты. Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:
Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.
Оксид меди
При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди . Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.
Под слоем меди расположен окисел розового цвета – закись меди Cu2O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков: .
Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте: .
Пластинку
промывают, высушивают и прокаливают
при невысокой температуре –
и выпрямитель готов. Электроны могут
проходить только от меди через закись
меди. В обратном направлении электроны
проходить не могут. Это объясняется тем,
что закись меди обладает различной проводимостью.
В слое закиси меди, который примыкает
непосредственно к меди, имеется избыток
электронов, и электрический ток проходит
за счет электронов, т.е. существует электронная
проводимость. В наружном слое закиси
меди наблюдается нехватка электронов,
что равноценно появлению положительных
зарядов. Поэтому, когда к меди подводят
положительный плюс источника тока, а
к закиси меди – отрицательный, то электроны
через систему не проходят. Электроны
при таком положении полюсов движутся
к положительному электроду, а положительные
заряды – к отрицательному. Внутри слоя
закиси возникает тончайший слой, лишенный
носителей электрического тока, - запирающий
слой. Когда же медь подключена к отрицательному
полюсу, а закись меди к положительному,
то движение электронов и положительных
зарядов изменяется на обратное, и через
систему проходит электрический ток. Так
работает купроксный выпрямитель.
Гидроксиды меди
Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:
Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета: .
Это нестойкое соединение, которое легко окисляется до гидроксида меди (II): .
Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей: , .
Таким образом, гидроксид меди (II) может диссоциировать и как основание: и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:
Сульфаты
Наибольшее практическое значение имеет CuSO4*5H2O, называемый медным купоросом. Его готовят растворением меди в концентрированной серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется: .
Медный
купорос применяют при
Карбонаты
Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.
Комплексообразование
Характерное свойство двухзарядных ионов меди – их способность соединятся с молекулами аммиака с образованием комплексных ионов.
Качественные реакции на ионы меди
Ион меди можно открыть, прилив к раствору ее соли раствор аммиака. Появление интенсивного сине-голубого окрашивания связано с образованием комплексного иона меди [Cu(NH3)4]2+:
Медь интенсивно окрашивает пламя в зеленый цвет.
Сплавы
Латуни
Латуни
— это двойные и
Двойные (простые) латуни относятся к системе Cu—Zn (рис. 19.3). Медь с цинком образует кроме a -твердого раствора на основе меди ряд промежуточных фаз b , g и т. д.
Фаза b — это твердый раствор на основе электронного соединения CuZn (фаза Юм—Розери) с решеткой ОЦК. При охлаждении при температуре около 450 ° С b –фаза переходит в упорядоченное состояние (b ® b ¢ ), причем b ¢ -фаза в отличие от b -фазы является более твердой и хрупкой.
Фаза g — твердый раствор на основе электрон-ного соединения Cu5Zn8 отличается очень высокой хрупкостью и ее присутствие в промышленных конструкционных сплавах исключается.
Механические свойства латуни определяются свойствами фаз. По мере увеличения содержания цинка в латунях их прочность возрастает. Максимум прочности достигается в двухфазной области (a + b ) при содержании цинка около 45 %. При большем содержании цинка прочность резко уменьшается из-за высокой хрупкости b ¢ -фазы. Поэтому в промышленности применяют преимущественно a - и (a + b )-латуни. Представляют интерес как основа сплавов с эффектом памяти формы b -латуни.
Все
латуни, содержащие более 20 % Zn, склонны
к коррозионному
В России принята буквенно-цифровая маркировка латуней, в которой буквы обозначают основные компоненты сплава, числа — их примерное содержание в процентах. Марка латуни начинается с буквы «Л». В двойных (простых) латунях число после буквы «Л» определяет среднее содержание меди. В марках многокомпонентных латуней после буквы «Л» указаны легирующие элементы, которым даны следующие обозначения: О — олово; А — алюминий; Н — никель; К — кремний; Ж — железо и т. д. Порядок букв и чисел в деформируемых и литейных латунях различен. В деформируемой латуни первое число после букв указывает среднее содержание меди, последующие числа, отделенные через тире, указывают среднее содержание легирующих элементов. Например, латунь ЛА77-2 имеет
следующий состав: 77 % Cu, 2 % Al, остальное Zn. В литейных латунях среднее содержание компонентов сплава указывается сразу после буквы, обозначающей его название; цинк обозначается буквой «Ц». Например, литейная латунь ЛЦ30А3 содержит 30 % Zn, 3 % AL, Cu — основа.
Бронзы
Бронзами
называют медные сплавы, в которых
основными легирующими
По химическому составу бронзы подразделяются на оловянные и безоловянные, и в каждой из этих групп по технологии производства бронзы делятся на обрабатываемые давлением и литейные.
В марке обрабатываемых давлением оловянных (ГОСТ 5017–74) и безоловянных бронз (18175–78) после букв «Бр» стоят буквенные обозначения названий легирующих элементов в порядке убывания их концентрации, а в конце марки в той же последовательности указаны средние концентрации соотвествующих элементов (например, БрОЦС4-4-2,5). В марке литейных оловянных (ГОСТ 613–79) и безоловянных бронз (ГОСТ 493–79) после каждого обозначения легирующего элемента указано его содержание. Если составы литейной и деформируемой бронз перекрываются, то в конце марки литейной бронзы ставится буква «Л» (например, БрА9Ж3Л).
Свойства бронз определяются содержанием в них легирующих элементов. Для бронз, в которых легирующие элементы входят в основном в твердый раствор, характерно твердорастворное упрочнение. Дополнительно они могут быть упрочнены путем пластической деформации. Бронзы, содержащие бериллий, хром, цирконий и некоторые другие элементы с переменной растворимостью в твердом растворе, упрочняются путем закалки и последующего дисперсионного твердения.
К классу термически упрочняемых сплавов относится также алюминиевая бронза БрАЖН10-4-4, в которой упрочнение при термообработке связано с мартенситным
превращением.
Бронзы по сравнению с латунью обладают более высокой прочностью, коррозионной стойкостью и антифрикционными свойствами. Они достаточно коррозионностойки в морской воде, в растворах большинства органических кислот, углекислых растворах.
Медноникелевые сплавы
Никель — металл серебристо-белого цвета, кристаллизующийся в решетку ГЦК с параметром а = 0,352 нм (при 20 ° С) и полиморфных превращений не имеет. При температуре ниже 358 ° С (точка Кюри) никель является слабым ферромагнетиком.
Никель — прочный, высокопластичный металл, отличающийся высокой коррозионной стойкостью, повышенной температурой плавления и высокой каталитической способностью. Это обусловило его широкое применение в металлургии, машиностроении, электронике, медицине и других отраслях техники.