Лекции по "Материаловедению"

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 08:24, курс лекций

Краткое описание

1. Атомно-кристаллическое строение металлов.
Металлы, описываемые пространственной кристаллической решеткой, под которой понимают наименший комплекс атомов, при многократной трансляции которых по всем направлениям воспроизводится пространственная кристаллическая решетка.
В узлах кристаллической решетки располагаются атомы.

Содержимое работы - 1 файл

1.doc

— 582.00 Кб (Скачать файл)

39. Классификация  способов сварки.

Способы сварки металлов разделяют на две группы: сварка плавлением и сварка давлением. К первой группе относятся электродуговая сварка, импульсно-дуговая, лазерная, ванная, электрошлаковая, плазменная, электронно-лучевая в вакууме, термитная и газовая. Ко второй группе - контактная, газопрессовая, ультразвуковая, диффузионная в вакууме, трением, холодная сварка, сварка индукционная или токами высокой частоты.

СВАРКА ПЛАВЛЕНИЕМ

Электродуговая сварка (ручная, полуавтоматическая, автоматическая) является наиболее распространенной; характеризуется использованием тепла электрической дуги для разогрева и плавления металла.

Импульсно-дуговая сварка характеризуется тем, что сварочный  ток подается кратковременными импульсами в «дежурную» сварочную дугу.

Лазерная сварка предусматривает  использование фотоэлектронной энергии. Плавление металла осуществляется световым лучом, полученным с помощью специальных устройств (лазеров).

Электрошлаковая (ванная) сварка происходит в результате плавления  основного и присадочного металла  за счет тепла, выделяющегося при прохождении электрического тока через расплавленный шлак.

Плазменная сварка - процесс, в основе которого лежит плавление  основного и присадочного металла  плазменной струей, имеющей температуру  до 30000 °С.

Электронно-лучевая сварка в вакууме осуществляется в камерах, имеющих разряжение до 10-4-10-6 мм рт. столба. Металл плавится за счет тепла, выделяющегося в результате бомбардировки металла электронами, направленными специальной установкой.

Термитная сварка состоит  в следующем. Место соединения формуют огнеупорным материалом. Над соединением устанавливают тигель с термитом (порошок алюминия и окиси железа), при горении которого восстанавливается окись железа и образуется жидкий металл. Заполняя форму, жидкий металл оплавляет кромки свариваемого металла и при остывании образует сварное соединение.

Газовая сварка - процесс, который происходит при нагреве  и плавлении основного и присадочного металла за счет тепла газокислородного пламени, имеющего температуру до 3200 °С.

Таким образом, все виды сварки плавлением различаются способом получения тепла, необходимого для нагрева и плавления металла.

СВАРКА ДАВЛЕНИЕМ

Контактная сварка - это  расплавление или разогрев до пластического  состояния кромок свариваемого металла  теплом, полученным при прохождении электрического тока через контактирующие между собой кромки, и последующее сжатие под определенным давлением (стыковая, точечная, роликовая, импульсная или конденсаторная).

Газопрессовая сварка отличается от контактной в основном тем, что  свариваемые кромки нагревают многопламенными горелками без использования электрического тока.

Ультразвуковая сварка происходит за счет превращения электрических  колебаний в механические высокой  частоты. Это превращение сопровождается возникновением в местах соединения металлов высокой температуры и разогревом металла до пластического состояния, при котором возможно сплавление с применением усилий сжатия.

Диффузионная сварка в вакууме происходит без нагрева, за счет взаимной диффузии частиц металлов соединяемой пары при сжатии.

Сварка трением соединение металлов за счет тепла, возникающего при трении двух поверхностей свариваемого металла с применением последующего сжатия.

Холодная сварка основана на способности некоторых металлов создавать прочные соединения под  высоким давлением, вызывающих пластическую деформацию.

Индукционная сварка - нагрев деталей токами высокой  частоты до пластического состояния  с применением последующего сжатия.

Все вышеуказанные способы  сварки все шире применяются в  промышленности и строительстве. В строительстве главными материалами являются металлопрокат и различные сплавы металлов. В дальнейшем в более широком масштабе будет происходить переход от использования низкоуглеродистых сталей к применению низколегированных и высокопрочных сталей.

Основным и самым передовым технологическим процессом получения неразъемного соединения деталей и конструкций в современном промышленном строительстве будет оставаться сварка как наиболее экономный и производительный процесс, объемы применения которого постоянно продолжают расти.

Дальнейшее совершенствование  и повышение эффективности строительно-монтажных  работ предусматривает увеличение объема производства сварных конструкций  при постоянном росте степени  механизации их монтажа и автоматизации  сварки.

По-прежнему способы электродуговой сварки (покрытыми электродами, под флюсом, в защитных газах, порошковой и голой легированной проволокой) остаются основными при строительно-монтажных работах Непрерывно повышается только уровень механизации сварочных процессов. Созданы и серийно выпускаются высокопроизводительные электроды для ручной дуговой сварки в различных пространственных положениях, низкотоксичные электроды, улучшающие условия труда сварщиков-монтажников. Новые возможности для механизации электродуговой сварки штучными электродами открывают способы сварки наклонным и лежачим электродами.

Совершенствование оборудования и технологии сварки плавящимся электродом в среде СО2 и различных газовых  смесях позволяет значительно повысить уровень механизации сварочных  работ. Разработка новых и совершенствование существующих марок порошковых проволок, дающих возможность успешно осуществлять вертикальную сварку открытой дугой, создают перспективу повышения уровня механизации сварочно-монтажных работ непосредственно на строительных площадках.

Наряду с развитием  способов электродуговой сварки расширяется  область применения контактной сварки и электрошлаковой сварки толстолистовых конструкций, что обеспечивает высокую  производительность и гарантирует  хорошее качество сварного соединения. Вышли из стадии лабораторных исследований плазменно-дуговые способы сварки и резки различных сталей и сплавов. Разработаны и успешно внедряются прогрессивные методы термической обработки и контроля сварных соединений применительно к строительным конструкциям.

40. Виды сварных  соединений. Виды сварных швов.

Неразъемное соединение, выполненное сваркой, называется сварным  соединением. В зависимости от взаимного  расположения в пространстве соединяемых  деталей различают соединения:

 Стыковые сварные  соединения (Рис. 1, а) – свариваемые элементы располагаются в одной плоскости или на одной поверхности. Устанавливается 32 вида стыковых соединений. Обозначаются С1, С2, С3, С4 и т.д.

Нахлесточные сварные  соединения (Рис. 1, б). Свариваемые элементы расположены параллельно и перекрывают друг друга. Величина перекрытия должна быть в пределах 3-420 мм. Обозначаются Н1, Н2.

Тавровые сварные соединения (Рис. 1, в). Отличительной особенностью этих соединений является то, что одна из соединяемых деталей торцом устанавливается на поверхности другой и приваривается, образуя в сечении как бы букву Т (отсюда и название – тавровое). Обозначаются Т3, Т6 и т.д.

Угловые сварные соединения (Рис. 1, г) – сварное соединение  двух элементов, расположенных под  прямым углом и сваренных в месте примыкания их краев.

 

 

Рисунок 1. Типы сварных  соединений.

а) стыковое; б) нахлесточное; в) тавровое; г) угловое.

Обозначаются по ГОСТ5264-80 У1, У2, У3 и т.д.

Классификация сварных швов

По виду сварного соединения – стыковые и угловые.

По положению сварного соединения в котором выполняются сварные швы бывают: «в лодочку» нижние, полугоризонтальные, горизонтальные, полувертикальные, вертикальные, полупотолочные и потолочные.

По конфигурации сварного соединения швы бывают прямолинейные  кольцевые и криволинейные.

По протяженности сварного соединения – сплошные и прерывистые.

По применяемому виду сварки разделяются на швы ручной дуговой сварки, автоматической и  механизированной под флюсом, швы  дуговой сварки в защитных газах, швы электрошлаковой сварки, электрозаклепочные, контактной, газовой, паянных соединений.

По способу удержания  сварочной ванны: на швы, выполненные  без прокладок и подушек, на съемных  и остающихся стальных прокладках, на медных, флюса медных, керамических и асбестовых подкладках.

По количеству наложения  швов бывают односторонние, двусторонние, многослойные и многопроходные.

По применяемому для  сварки материалу швы сварных  соединений подразделяются на швы из углеродистых и легированных сталей, швы цветных металлов, биметалла, винипласта и полиэтилена.

По расположению свариваемых  деталей относительно друг друга  швы могут быть под острым, тупым, прямым углом, а также располагаться  в одной плоскости.

По действующему на шов  усилию швы бывают фланговые, лобовые, комбинированные и косые.

По объему наплавленного  металла нормальные, ослабленные  и усиленные швы.

По форме свариваемой  конструкции на изделии продольные и поперечные

41. Оборудование  газовой сварки. Кислородная резка  металлов.

Газовая сварка используется для нагрева металла высокотемпературным пламенем, образующимся в результате сгорания газа ацетилена в смеси с кислородом. В некоторых случаях вместо ацетилена могут использоваться его заменители: пропан-бутан, метан, пары бензина или керосина, МАФ (метилацетилен-алленовая фракция). В последнее время увеличивается объем использования в качестве горючего газа водорода, получаемого электролизом воды.

Горючий газ из баллона  или специального газового генератора поступает в сварочную горелку. Из баллона в горелку поступает  кислород. В горелке они смешиваются в определенном соотношении и на выходе из сопла поджигаются. Пламя расплавляет кромки свариваемого изделия, присадочный приток, а также выполняет функции защиты расплавленного металла от атмосферы. Регулировка расхода кислорода и горючего газа осуществляется соответствующими вентилями.

Строение пламени при  газовой сварке

В своем сечении пламя  состоит из трех зон (см. рисунок  ниже):

ядро пламени (А),

восстановительная зона (Б),

факел пламени (В).

Строение газового пламени  и распределение температур по его сечению

Максимальное значение температуры пламя имеет после  ядра, в восстановительной зоне. В связи с этим именно в этой зоне должны находиться присадочный  пруток и расплавляемые кромки металла. При использовании вместо ацетилена  других горючих газов температура пламени снижается. Температура пламени зависит также от пропорции, в которой смешиваются кислород и горючий газ.

Кислородная резка заключается в сгорании разрезаемого металла в кислородной струе и удалении этой струей образовавшихся оксидов.

Технология кислородной  резки

Разрезаемый металл предварительно нагревается подогревающим пламенем резака, которое образуется в результате сгорания горючего газа в смеси с  кислородом. При достижении температуры  воспламенения металла в кислороде, на резаке открывается вентиль чистого кислорода (99–99,8%) и начинается процесс резки. Чистый кислород из центрального канала мундштука, предназначенный для окисления разрезаемого металла и удаления оксидов, называют режущим в отличие от кислорода подогревающего пламени, поступающего в смеси с горючим газом из боковых каналов мундштука.

Струя режущего кислорода  вытесняет в разрез расплавленные  оксиды, которые, в свою очередь, нагревают  следующий слой металла, способствуя  его интенсивному окислению и  т. п. В результате разрезаемый лист подвергается окислению по всей толщине, а расплавленные оксиды удаляются из зоны резки под действием струи режущего кислорода.

Техника кислородной  резки

Поверхность разрезаемого листа следует очистить от окалины, краски, масла, ржавчины и грязи. Особое внимание уделяется очистке поверхности листа от окалины, поскольку она препятствует контакту металла с пламенем и струей режущего кислорода. Для этого требуется незначительный прогрев поверхности стали подогревающим пламенем резака, в результате которого окалина отскакивает от поверхности. Прогрев следует выполнять узкой полосой по линии предполагаемого реза, перемещая пламя со скоростью, приблизительно соответствующей скорости резки.

Перед кислородной резкой металл нагревается с поверхности в начальной точке реза до температуры его воспламенения в кислороде. После пуска струи режущего кислорода и начала процесса окисления металла по толщине листа резак перемещают по линии реза.

Как правило, прямолинейная  кислородная резка стальных листов толщиной до 50 мм выполняется вначале с установкой режущего сопла мундштука в вертикальное положение, а затем с  наклоном в сторону, противоположную направлению резки (обычно на 20–30º). Наклон режущего сопла мундштука в сторону ускоряет процесс окисления металла и увеличивает скорость кислородной резки, а, следовательно, и ее производительность. При большей толщине стального листа резак в начале резки наклоняют на 5º в сторону, обратную движению резки.

Информация о работе Лекции по "Материаловедению"