Автор работы: Пользователь скрыл имя, 11 Декабря 2012 в 18:18, реферат
Конвертерное производство находится на этапе модернизации, одним из элементов которой является реализация прогрессивной технологии с комбинированной продувкой. Известно, что эта технология широко используется за рубежом и обеспечивает снижение энерго– и материалоемкости процесса, повышение качества стали, возможность производства продукции со специальными свойствами [1,2]. В таких условиях возрастает потребность в информации об особенностях и возможностях технологий выплавки металла в конвертерах с комбинированной продувкой и, особенно, возможностях глубокого обезуглероживания металла [3], а также, в целом, обеспечения химсостава металла для производства чистых сталей.
Введение……………………………………………………………………………2
1. История возникновения конвертера……………………………………………3
2. Конвертеры с комбинированной продувкой кислородом……………………5
3. Технология плавки стали в конвертере с комбинированной продувкой…..7
4. Достоинства конвертеров с комбинированной продувкой кислородом……9
Литература…………
Содержание
Введение…………………………………………………………
1. История возникновения конвертера……………………………………………3
2. Конвертеры с комбинированной продувкой кислородом……………………5
Литература……………………………………………………
Введение.
Конвертерное производство находится на этапе модернизации, одним из элементов которой является реализация прогрессивной технологии с комбинированной продувкой. Известно, что эта технология широко используется за рубежом и обеспечивает снижение энерго– и материалоемкости процесса, повышение качества стали, возможность производства продукции со специальными свойствами [1,2]. В таких условиях возрастает потребность в информации об особенностях и возможностях технологий выплавки металла в конвертерах с комбинированной продувкой и, особенно, возможностях глубокого обезуглероживания металла [3], а также, в целом, обеспечения химсостава металла для производства чистых сталей.
1. История возникновения конвертера
В 1855 году англичанин Генри Бессемер провел интереснейший опыт: он расплавил в тигле кусок доменного чугуна и продул его воздухом. Хрупкий чугун превратился в ковкую сталь. Все объяснялось очень просто – кислород воздуха выжигал углерод из расплава, который удалялся в атмосферу в виде оксида и диоксида. Впервые в истории металлургии для получения продукта не требовался дополнительный подогрев сырья. Это и понятно, ведь Бессемер реализовал экзотермическую реакцию горения углерода. Процесс был удивительно быстротечен. В пудлинговой печи сталь получали лишь за несколько часов, а здесь – за считанные минуты. Так Бессемер создал конвертер – агрегат, превращающий расплавленный чугун в сталь без дополнительного нагрева. Д.И. Менделеев назвал бессемеровские конвертеры печами без топлива. А поскольку по форме агрегат Бессемера напоминал грушу, его так и называли – «бессемеровская груша».
В бессемеровском конвертере можно переплавлять не всякий чугун, а только такой, в составе которого имеются кремний и марганец. Соединяясь с кислородом подаваемого воздуха, они выделяют большое количество теплоты, которая и обеспечивает быстрое выгорание углерода. Все же теплоты не хватает, чтобы расплавлять твердые куски металла. Поэтому в бессемеровском конвертере нельзя перерабатывать железный лом или твердый чугун. Это резко ограничивает возможности его применения.
Бессемеровский процесс –
Сегодняшний конвертер, конечно, можно в определенном смысле называть потомком бессемеровского детища, ибо в нем, как и прежде, сталь получают, продувая жидкий чугун. Но уже не воздухом, а технически чистым кислородом. Это оказалось намного эффективнее.
Кислородно-конвертерный способ выплавки стали пришел в металлургию более чем полвека назад. Созданный в Советском Союзе по предложению инженера-металлурга Н.И. Мозгового, он полностью вытеснил бессемеровский процесс А первая в мире тонна кислородно-конвертерной стали была успешно выплавлена в 1936 году на киевском заводе «Большевик».
Оказалось, что таким способом можно не только перерабатывать жидкий чугун, но и добавлять в него значительные количества твердого чугуна и железного лома, который раньше можно было перерабатывать только в мартеновских печах. Вот почему кислородные конвертеры получили такое большое распространение.
Но только в 1950-е годы конвертеры
для выплавки стали окончательно
выдвинулись на первый план. Степень
использования тепла в
Существует три вида конвертеров: с донной продувкой, верхней и комбинированной. В настоящее время наиболее распространенными в мире являются конвертеры с верхней продувкой кислородом – агрегаты весьма производительные и относительно простые в эксплуатации. Однако в последние годы во всем мире конвертеры с донным и с комбинированным (сверху и снизу) дутьем начинают теснить конвертеры с верхней продувкой.
2. Конвертеры с комбинированной продувкой кислородом
Комбинированная продувка,
т.е. продувка кислородом через фурму
сверху в сочетании с подачей
различных газов через днище
снизу получает все более широкое
распространение. На начало 1986 г. в капиталистических
и развивающихся странах из 345
эксплуатируемых конвертеров
Широкое распространение сравнительно недавно возникшего комбинированного способа продувки объясняется тем, что в рамках одной технологии одновременно реализуются основные преимущества как верхней, так и донной продувки. Основным сохраняемым преимуществом верхней продувки является раннее формирование основного шлака; основным сохраняемым достоинством донной продувки - интенсивное перемешивание ванны, в том числе металла и шлака, в связи с чем понижается их окисленность, улучшаются дефосфорация и десульфурация металла, уменьшается вспенивание ванны, возможно увеличение расхода лома и др.
Находят применение много разновидностей комбинированной продувки, которые помимо подачи кислорода через фурму сверху включают следующие способы подачи газов через днище (снизу):
В конвертерных процессах комбинированной продувки с вдуванием кислорода снизу его расход через дно составляет 10—20 % общего расхода и иногда более, а интенсивность продувки через днище достигает 1-1,5 м3/(т • мин); в процессах с подачей через дно лишь инертных газов интенсивность продувки через дно составляет 0,02-0,25 м3/(т • мин).
В зарубежной практике наиболее широко распространен конвертерный процесс ЛБЕ — продувка кислородом сверху и нейтральными газами снизу через пористые огнеупорные блоки в днище.
Это объясняется тем, что из-за малого диаметра (1—1,5 мм) газопроводящих каналов (пор) в пористых блоках, жидкий металл не затекает в них даже при прекращении подачи газа. Поэтому в любой момент можно изменить расход нейтрального газа или прекратить его подачу, гибко варьируя технологию продувки.
Необходимо отметить, что различия между многими процессами комбинированной продувки незначительны, большое же число названий связано в основном с престижными и патентными интересами частных металлургических фирм.
Многочисленные варианты комбинированной продувки можно в основном свести к двум разновидностям: продувке кислородом сверху и снизу и продувке кислородом сверху и нейтральными газами снизу. Как уже отмечалось, наибольшее распространение получила вторая разновидность комбинированной продувки, поскольку она может обеспечить высокую интенсивность перемешивания ванны и в то же время более проста и требует заметно меньших затрат при переоборудовании конвертера и цеховых коммуникаций на комбинированную продувку.
Ниже дана краткая характеристика технологии комбинированной продувки, основанной на опыте отечественных конвертерных цехов. Продувку кислородом сверху ведут через обычные и иногда через двухъярусные фурмы. Нейтральные газы (N2, Ar) подают через одноканальные фурменные блоки, число которых изменяется от 4 до 10. Обычно снизу в течение большей части продувки подают азот, а в ее конце азот заменяют аргоном. Это делают, чтобы предотвратить растворение в металле азота, которое, как известно, усиленно идет при высоких температурах; в начале же продувки при низкой температуре металла азот в нем почти не растворяется, и поэтому используют менее дефицитный, чем аргон, и более дешевый азот.
Плавка состоит из тех же периодов, что и при верхней продувке, иногда после окончания продувки кислородом предусматривают дополнительный период - продувку аргоном длительностью до 3-6 мин.
Режим подачи кислорода через верхнюю фурму (интенсивность продувки, изменение высоты положения фурмы по ходу продувки) примерно такой же, как и при верхней продувке. Режим подачи нейтральных газов через донные фурмы рекомендуется следующий.
Во время завалки лома, заливки чугуна подают азот с интенсивностью 0,015-0,05 м3/(т • мин). В течение первых 30% длительности продувки подают азот с расходом 0,02— 0,15 м3/(т • мин). В середине продувки (примерно от 30 до 65% ее длительности), когда велика скорость окисления углерода и ванна интенсивно перемешивается пузырями СО, расход азота снижают до 0,02-0,06 м3/(т • мин). В течение оставшегося времени кислородной продувки расход газа увеличивают до 0,08-0,30 м3/(т • мин), причем за 2-4 мин до окончания продувки азот обычно заменяют аргоном.
Во время повалки конвертера, отбора проб, ожидания анализа, слива металла и шлака через донные фурмы подают аргон или азот с расходом от 0,02 до 0,05—0,08 м3/(т • мин). При появлении в ходе продувки признаков выбросов расход азота увеличивают до максимальной пропускной способности донных фурм.
Характер изменения состава
металла и шлака по ходу продувки
остается таким же, как и при
верхней продувке. Вместе с тем, благодаря
дополнительному перемешиванию
ванны подаваемыми снизу
Продувку заканчивают после получения в металле заданного содержания углерода. Иногда после окончания кислородной продувки проводят дополнительную продувку аргоном снизу в течение 1-3 мин с расходом до 0,3м3/(т • мин); при этом снижается окисленность шлака и содержание углерода в металле в результате протекания реакции (FeO) + [C] = Fe + CO и в металле снижается содержание фосфора (примерно на 20-30%) и серы (примерно на 10-25%).
При выплавке особо низкоуглеродистых сталей кислородную продувку прекращают при содержании углерода в металле 0,03 -0,04% и затем ведут перемешивающую продувку аргоном в течение 3—6 мин, получая низкоуглеродистый (до 0,01 % С) металл при невысоком содержании FeO в шлаке, т.е. без повышенного угара железа.
Основные достоинства
комбинированной продувки при подаче
нейтральных газов через дно
в сравнении с верхней
Недостатком конвертерного процесса с комбинированной продувкой считают необходимость снижения расхода лома (или увеличения расхода чугуна на 5—10 кг/т стали) в связи с тем, что уменьшается приход тепла от окисления железа в шлак и расходуется тепло на нагрев подаваемых в конвертер холодных нейтральных газов.
Информация о работе История возникновения конвертера с комбинированной продувкой