Шпаргалка по "Физиологии возбудимых тканей"

Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 20:37, шпаргалка

Краткое описание

В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая затем была названа мембранным потенциалом покоя или мембранным потенциалом. Его величина у разных клеток колеблется от 60 до 90 мВ.

Содержимое работы - 1 файл

Шпоры по ФВТ.doc

— 105.00 Кб (Скачать файл)


1.1(2.1) В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая затем была названа мембранным потенциалом покоя или мембранным потенциалом. Его величина у разных клеток колеблется от 60 до 90 мВ.

Было разработано несколько теорий возникновения и поддержания мембранного потенциала покоя. В 1949-52 гг. Ходжкин, Хаксли, Катц модифицировали и экспериментально обосновали мембранно-ионную теорию. Согласно мембранно-ионной теории мембранный потенциал покоя (МПП) обусловлен неодинаковой концентрацией ионов натрия, калия, кальция, хлора внутри клетки и во внеклеточной жидкости, а также неодинаковой проницаемостью для этих ионов поверхностной мембраны клетки. Цитоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Следовательно, в состояний покоя существует асимметрия концентрации ионов внутри клетки и в окружающей ее среде.

В мембране клетки имеются ионные каналы, образованные макромолекулами белка, пронизывающих липидный слой. Каналы мембраны делятся на неспецифические (каналы утечки) и специфические (селективные, обладающие способностью пропускан только определенные ионы). Неспецифические каналы пропускают различные ионы и открыты постоянно. Специфические каналы открываются и закрываются в ответ на изменения МПП. Эти каналы называются потенциалозависимыми.

Селективные потенциалозависмые ионные каналы подразделяются на: натриевые, калиевые, кальциевые и хлорные. Однако их селективность часто не абсолютна, а название канала указывает лишь на тот ион, для которого данный канал наиболее проницаем.

Поляризация мембраны при открытых калиевых каналах и наличии трансмембранного градиента концентраций калия, объясняется прежде всего утечкой внутриклеточного калия в окружающую клетку среду. Выход положительно заряженных ионов калия приводит к появлению положительного заряда на наружной поверхности мембраны. Органические анионы - крупномолекулярные соединения, которые несут отрицательный заряд, и для которых мембрана клетки непроницаема, придают в этих условиях внутренней поверхности мембраны отрицательный заряд.

В состоянии покоя наблюдаются небольшие потоки ионов калия и натрия (калия больше, чем натрия) через мембрану по их концентрационному градиенту, что в конечном итоге должно было бы привести к выравниванию концентрации этих ионов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране существует особый молекулярный механизм, который получил название натрий-калиевого насоса. Он обеспечивает выведение из цитоплазмы клетки ионов натрия и введении в цитоплазму ионов калия. Ионный насос перемещает ионы против их концентрационного градиента, следовательно, он работает с затратой энергии.

Таким образом, возникновение и поддержание мембранного потенциала покоя обусловлено избирательной проницаемостью мембраны клетки и работой натрий-калиевого насоса.

1.2 При распространении возбуждения по безмиелиновому нервному волокну местные электрические токи,, которые возникают между его возбужденным участком, заряженным отрицательно, и невозбужденным, заряженным положительно, вызывают деполяризацию мембраны до критического уровня с последующей генерацией ПД в ближайшей точке невозбужденного участка мембраны. Этот процесс повторяется многократно. На всем протяжении нервного волокна происходит процесс репродукции нового ПД в каждой точке мембраны волокна. Такое проведение возбуждения называете и непрерывным.

Наличие у миелиновых волокон оболочки, обладающей высоким электрическим сопротивлением, а также участков волокна, лишенных оболочки (перехватов Ранвье) создают условия для качественно нового типа проведения возбуждения по миелиновым нервным волокнам. Местные электрические токи возникают между соседними перехватами Ранвье, т. к. мембрана возбужденного перехвата становится заряженной отрицательно по отношению к поверхности соседнего невозбужденного перехвата. Эти местные токи деполярязуют мембрану невозбужденного перехвата до критического уровня и в нем возникает ПД .Следовательно, возбуждение как бы "перепрыгивает" через участки нервного волокна, покрытые миелином, от одного перехвата к другому. Такой механизм распространения возбуждения называется сальтаторным или скачкообразным. Скорость такого способа проведения возбуждения значительно выше и он более экономичен по сравнению с непрерывным проведением возбуждения, поскольку в состояние активности вовлекается не вся мембрана, а только ее небольшие участки в области перехватов.

Закон анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е. к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается.

1.3 (4.3).Синапсом называется место контакта нервной клетки с другим нейроном .или исполнительным органом. Все синапсы

.делятся на следующие группы:

1. По механизму передачи:

а. Электрические. В них возбуждение передается посредством электрического поля. Поэтому оно может передаваться в обе стороны. И в ЦНС мало.

б. Химические. Возбуждение через них передается с помощью ФАВ -неиромедиатора. Их в ЦНС большинство.

в. Смешанные.

2. По локализации:.

а Центральные, расположенные в Ц.Н.С.

б. Периферические, находящиеся вне ее. Это нервно-мышечные синапсы и синапсы периферических отделов вегетативной нервней системы.

   4. В зависимости от неиромедиатора, используемого для передачи:

а. Холинэргические - медиатор ацетнлхолин (АХ).

б. Адренергические - норадреналин (НА).

в. Серотонинергические - серотоннн (СТ).

г. Глицинергические - аминокислота глицин (ГЛИ).

д. ГАМКергические - гамма аминомасляная кислота (ГАМК).

е. Дофаминергические - дофамин (ДА).

ж. Пептидергчческие - медиаторами являются нейропептиды. В частности роль чейромедиаторов выполняют вещество Р опоидный пептид в эндорфин и др.

5. По месту расположения синапса:

а. Аксо-дендритные (между аксоном одного и дендритом второго нейрона).

б. Аксо-аксональные

в. Аксо-соматические

г. Дендро-соматическне

д. Дендро-дендритные

Механизмы синоптической передачи. Постсинаптические потенциалы.

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза, (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция «ходят в синаптическую бляшку. Начинается выделение большого количества неиромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников, В частности цАМД). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми.

т.е они открываются при действии-ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал

субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.  

В ЦНС возбуждающими являются холин -, адрен -; дофамин -, серотонинергические синапсы, и некоторые другие. При взаимодействий их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП). Тормозными являются глицин- и ГАМКергические синапсы. При связывании медиатора с хеморецепторами. активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через, мембрану. Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Она называется тормозным постсинаптическим потенциалом (ТПСП).

.

1.4 При нанесении на двигательный нерв или мышцу одиночного порогового или сверх порогового раздражения, возникает одиночное сокращение.  При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1.Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около -2 мсек. Во время латентного периода генерируется и распространяется ПД, происходит, высвобождения кальция ,13 СР. взаимодействие актина с миозином и т.д.

2. Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 Мсек.,

3.Период расслабления. Его длительность несколько больше, чем укорочения. Рис. В: режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются. Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения,    но больше продолжительности рефракторного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности. Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис).. Гладкий тетанус возникает тогда, когда', каждое последующее раздражение наносится а конце периода укорочения т.е. имеет место полная суммация отдельных сокращений и (рис.). Амплитуда гладкого тетануса больше, чем зубчатого. В норме  мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук;

при алкогольной интоксикации и болезни Паркинсона.

Влияние частоты и с-илы раздражения на амплитуду сокращения

Если постепенно увеличивать частоту раздражения, то амплитуда титанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется  оптимальной;  Дальнейшее увеличение частоты раздражения сопровождается снижением силы титанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается . Понятие оптимальной и пессимальной частот предложил Н.Е. Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы. вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону' силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если  и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет католической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной вобудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе её волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

Режимы сокращения. Сила и работа мышц.

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы. Например, при поддержании позы тела.

3. Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела. другие двигательные акты.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола. возраста, степени тренированности человека. В зависимости от строения, выделяют мышцы с параллельными волокнами (например, портняжная'. веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь  ш;!1еречного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон. образующих мышцу. Наибольшая площадь поперечного физиологического сечения а, следовательно, сила, у перистых мыши. Наименьшая у мышце параллельным расположением волокон (рис.). При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении. нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами. кистевым, становым и т.д.. Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной. делённой на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет и.2 кг см2. трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2. работу мышц делят на динамическую и статическую. Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме. Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р*h)  Работа измеряется в кГ*М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних

Информация о работе Шпаргалка по "Физиологии возбудимых тканей"