Автор работы: Пользователь скрыл имя, 12 Апреля 2012 в 19:29, контрольная работа
Трудно переоценить значение мембран в жизни клетки и организма. Мембраны отделяют внутреннюю среду от внешней, разделяют клетку на отдельные компартменты (отсеки). Мембраны определяют возможность проникновения в клетку и выход из нее и отдельных органелл различных веществ (проницаемость).
1. Мембраны как основа строения растительной клетки. Основные свойства и функции мембран.
Трудно переоценить значение мембран в жизни клетки и организма. Мембраны отделяют внутреннюю среду от внешней, разделяют клетку на отдельные компартменты (отсеки). Мембраны определяют возможность проникновения в клетку и выход из нее и отдельных органелл различных веществ (проницаемость).
На поверхности мембран локализованы различные рецепторы, в том числе и рецепторы гормонов. На мембране или даже в самих мембранах упорядоченно располагаются полиферментные комплексы, проходят важнейшие процессы жизнедеятельности (перенос электронов в дыхательной цепи, окислительное и фотосинтетическое фосфорилирование). Таким образом, мембраны принимают участие во всех проявлениях жизнедеятельности, включая регуляцию активности организма и его реакцию на внешние воздействия.
Большинство мембран имеет сходный химический состав — примерно равное количество белков и липидов (60—40%) и небольшое количество (менее 10%) углеводов. Вместе с тем, мембраны с биосинтетической функцией, например, внутренняя мембрана митохондрий, содержат меньше липидов и больше белков, чем внешняя.
Среди липидов значительная доля принадлежит фосфолипидам. Эти полярные липиды являются сложными эфирами трехатомного спирта глицерина. У фосфолипидов две гидроксильные группы в молекуле глицерина замещены жирными кислотами, а третья — фосфорной кислотой. К фосфорной кислоте могут быть присоединены различные полярные соединения, чаще всего аминоспирты — этаноламин или холин. Важнейшим свойством молекул фосфолипидов является полярность, так как они содержат полярную гидрофильную головку (глицерин, фосфорная кислота, аминоспирт) и два гидрофобных углеводородных хвоста. В мембранах растительной клетки важное значение имеет фосфатидилглицерин, содержащий в своем составе не аминоспирт, а глицерин. Это главный фосфолипид фотосинтетического аппарата растений и единственный фосфолипид цианобактерий. От фосфолипидов во многом зависит проницаемость мембран; они поддерживают ее структуру.
Фосфолипиды влияют на активность белков — ферментов, входящих в состав мембран, изменяя их конформацию, а также создавая гидрофобную среду, благоприятствующую их действию.
Наряду с фосфолипидами в состав мембран входят глико- и сульфо-липиды. Гликолипиды, характерные для растительной клетки, вместо остатка фосфорной кислоты содержат производные Сахаров. Мембраны представляют собой тонкие (6—10 нм) замкнутые липопротеидные пласты. Вследствие этого у них нет свободных концов, и гидрофобные участки фосфолипидов не контактируют с водой. С этим же связано спонтанное образование различных везикул (пузырьков).
Структура мембран до настоящего времени не может считаться раскрытой. Разрешающая сила электронного микроскопа недостаточна, чтобы увидеть расположение молекул внутри мембран, в связи с этим большинство гипотез о структуре мембран покоится на определенных допущениях. Эти допущения основывались на том, что мембраны под электронным микроскопом имеют трехслойное строение. Еще в 1935 г. Дж. Даниэлян и Г. Даусон создали трехслойную модель мембраны, которая получила название «бутербродной».
Согласно этой модели основу мембраны составляет двойной слой липидных молекул, обращенных друг к другу гидрофобными участками. С двух сторон располагаются сплошным слоем белки. Однако с использованием современных методов исследования показано, что многие свойства мембран нельзя объяснить с помощью этой модели. Так, методом замораживания со скалыванием было показано, что белки мембраны, состоящие по преимуществу из гидрофобных аминокислот, могут находиться внутри двойного слоя липидов в углеводородной фазе.
Схема строения мембраны:
1 — липидный бислой;
2 — интегральные белки;
3 — периферические белки;
4 — углеводы
Наибольшее распространение получила модель жидкостно-мозаичной структуры мембран (С. Сингер и Дж. Николсон, 1972), согласно которой двойной слой полярных липидов, представляющий структурную основу мембраны, не является непрерывным. Мембрана как бы прошивается белковыми молекулами.
При этом различают белки: 1) интегральные, пронизывающие всю толщу мембран; 2) полуинтегральные, погруженные в мембрану примерно наполовину; 3) периферические, располагающиеся на поверхности мембран, но не образующие сплошного слоя. Глобулы интегральных и полуинтегральных белков связаны с липидами гидрофильно-гидрофобными взаимодействиями. Однако многие белки непрочно связаны с липидами и могут перемещаться в «липидном озере», в котором они как бы плавают.
Предполагают, что молекулы некоторых белков-ферментов могут вращаться в мембране и этому способствует изменение их конформации. Молекулы липидов тоже меняют свое расположение в пределах бислоя. Это может быть смена мест внутри слоя (латеральная диффузия), а также перескок (флип-флоп) с одной стороны мембраны на другую. Миграция и белков, и липидов осуществляется как путем диффузии, так и активным путем, идущим с использованием энергии. Флип-флоп требует обязательной затраты энергии.
Обнаруженная способность к свободному передвижению в мембранах подтверждает представление о жидкостном состоянии мембран, а происходящие изменения расположения компонентов мембран — об их динамичности.
Необходимо помнить, что липиды различаются по размерам, конфигурации, заряду (фосфоглицериды, гликолипиды и др.). В разных мембранах возможно их различное сочетание.
Различны и мембранные белки. Вероятно, в зависимости от липидов и белков, входящих в состав той или иной мембраны, характер ее структуры различен. Липиды находятся при физиологических условиях в жидком (разрыхленном) состоянии, что обеспечивается присутствием ненасыщенных жирных кислот.
Исследования последних лет выявили существенное различие в структуре внутренней и наружной поверхности мембран, их асимметричность. К белкам на наружной поверхности мембраны присоединяются углеводы с образованием гликопротеидов. Эти вещества имеют значение в образовании тканей, а также играют роль «ярлыка» клетки, участвуя в их взаимодействии. Асимметричным может быть и расположение разных липидов. Именно асимметрия обусловливает то обстоятельство, что в большинстве случаев мембраны проницаемы для веществ в одном направлении. Поверхностная одинарная мембрана — плазмалемма — отграничивает толщу цитоплазмы от пектоцеллюлозной оболочки. От свойств плазмалеммы во многом зависит характер обмена между внешней средой и клеткой. Вся поверхность плазмалеммы покрыта глобулярными частицами.
Полагают, что в этих частицах сосредоточены ферменты, участвующие в образовании клеточной оболочки. Плазмалемма обладает полупроницаемостью, хотя и не идеальной. Она хорошо проницаема для воды и значительно слабее для растворенных веществ. В связи с этим показано, что белки, расположенные в плазмалемме, приспособлены к избирательному транспорту отдельных веществ и воды. Мембранные белки, образующие внутри мембраны каналы, проницаемые для воды, носят название аквапорины. Ряд белков плазмалеммы осуществляет рецепторную функцию, в частности, связываясь с гормонами. Имеются данные, что в периоды активного роста поверхность плазмалеммы становится волнистой.
В процессе роста клетки наблюдается быстрое увеличение поверхности плазмалеммы. Это происходит путем присоединения к ней уже сформированных участков мембран, принадлежащих пузырькам аппарата Гольджи.
2. Показатели транспирации. Способы повышения продуктивности транспирации.
Завершающей частью водного обмена растений является транспирация, или испарение воды листьями, то есть верхний двигатель тока воды в растении. Это явление с физической стороны представляет собой процесс перехода воды в парообразное состояние и диффузию образовавшегося пара в окружающее пространство.
Транспирация выполняет в растении следующие основные функции:
это верхний двигатель тока воды,
это защита от перегрева,
это нормализация функционирования коллоидных систем клеток листа.
Транспирация характеризуется следующими показателями: интенсивностью, продуктивностью и коэффициентом.
Интенсивность транспирации - это количество воды, испаряемой растением с единицы листовой поверхности в единицу времени. Выражается формулой:
Тр= С г Н2О _
r м2.1час,
где Тр - интенсивность транспирации, С - градиент концентрации водяного пара между транспирирующей поверхностью и окружающим воздухом, r - сумма диффузионных сопротивлений листа (устьичного, кутикулярного и сопротивления пограничного слоя).
Сопротивление пограничного слоя зависит от ветра, при отсутствии ветра оно максимально, чем больше ветер, тем оно меньше.
Устьичное диффузионное сопротивление зависит от степени открытия устьиц.
Кутикулярное диффузионное сопротивление зависит от толщины кутикулярного слоя, чем она больше, тем больше сопротивление.
Продуктивность транспирации - это количество созданного сухого вещества на 1 кг транспирированной воды. В среднем эта величина равна 3 г/1 кг воды.
Транспирационный коэффициент показывает сколько воды растение затрачивает на построение единицы сухого вещества, т.е. этот показатель является величиной, обратной продуктивности транспирации и в среднем равен 300, т.е. на производство 1 тонны урожая затрачивается 300 тонн воды.
Очень важным моментом в процессе транспирации является действие абиотических факторов окружающей среды: влажности атмосферного воздуха и температуры воздуха.
Чем менее влажен атмосферный воздух, т.е. чем меньше его водный потенциал, тем интенсивнее будет идти транспирация. При 100% влажности воздуха его водный потенциал равен нулю. Уже при снижении влажности воздуха на 1-2% его водный потенциал становится отрицательной величиной, а при снижении влажности воздуха до 50% показатель водного потенциала выражается отрицательной величиной порядка 2-3 сотен бар в зависимости от температуры воздуха. При этом в клетках листьев показатель водного потенциала, как правило, выше нуля, поэтому диффундирование воды из межклетников в атмосферу наблюдается почти всегда.
Чем выше температура воздуха, тем выше будет и температура листа, при этом температура внутри клеток листа может быть на 10оС выше, чем в атмосфере. Происходит нагрев воды, находящейся в листе, что также способствует процессу испарения.
Регулировка транспирация происходит в растении по двум механизмам:
устьичная регуляция,
внеустьичная регуляция.
Наиболее существенной является устьичная регуляция, которая определяется как некоторыми физическими закономерностями, так и влиянием ряда факторов внешней среды и внутренней биохимией клеток листа.
С физической точки зрения основой испарения из устьица является физический механизм испарения с ограниченных поверхностей очень маленькой площади. При этом имеет значение величина снижения упругости водяного пара (F-f) и расстояние (l), на протяжении которого поддерживается эта разница, которая определяет градиент дефицита насыщения.
F-f
D = - --------
l
При этом скорость испарения V будет пропорциональна градиенту насыщения, а А - постоянная, определяемая прочими условиями, влияющими на скорость испарения:
F-f
V = А - --------
l
Поскольку речь идет об ограниченных поверхностях (устьице), то краевое испарение за счет меньшей величины l2 будет выше, чем в центре, т.е.:
F-f F-f
--- - - -----
l2 l1
Применительно к испарению с площади круга формула скорости испарения принимает вид
V = k R2,
где k - значение всех прочих факторов, определяющих скорость испарения, а R - радиус круга.
При испарении с малых поверхностей, когда доля участия краевого испарения значительна, формула видоизменяется в
V = k Rn,
где n - положительное число между 1 и 2, т.е.2 n1. В случае малых площадей, таких как отверстие устьичной щели, n становится равным 1. Таким образом определяющим становится фактор k, т.е. суммарное значение факторов окружающей среды и суммарное количество устьиц на листе.
В устьичной транспирации ведущими факторами являются:
количество устьиц на единицу листовой поверхности,
форма листа (чем более причудлива форма листа, тем больше его площадь, а, значит, и количество устьиц),
наличие ионов К+ (чем выше концентрация, тем больший приток воды в замыкающие клетки устьица и тем шире устьичная щель),
наличие абсцизовой кислоты (чем выше концентрация этого гормона старения, тем меньше раскрытие устьица) (пример - мутант томата wilty),
концентрация углекислого газа в подустьичной полости (чем ниже концентрация, т.е. меньше 0,03%, находящихся в воздухе, тем больший приток воды в замыкающие клетки устьица и тем шире устьичная щель),
наличие солнечного света (на свету крахмал превращается в простые сахара, т.е. концентрация клеточного сока выше, поэтому наблюдается больший приток воды в замыкающие клетки устьица и раскрытие устьичной щели),
наличие и скорость ветра (непосредственно к испаряющей поверхности прилегает слой воздуха, в котором водяной пар постепенно испаряется далее в атмосферу, при этом в безветренную погоду скорость испарения выражается линейной зависимостью между дефицитом насыщения воздуха и расстоянием от испаряющей поверхности. Однако, при наличии ветра, который "сдувает" испаряющиеся молекулы воды, происходит увеличение дефицита насыщения воздуха. Возле поверхности листа сохраняется лишь небольшой ламинарный слой (dS), сохраняющийся и при сильном ветре, где можно наблюдать линейную зависимость дефицита насыщения от расстояния).
Внеустьичная транспирация определяется количеством и размерами межклеточных пор в кутикуле листа. Радиус клеточных пор очень мал, составляет около 100-200 Ао, т.е. около 0,00001мм, однако в листе имеющем много кутикулярных пор скорость испарения снижается достаточно значительно, иногда почти в два раза.