Химические элементы в организме человека

Автор работы: Пользователь скрыл имя, 12 Декабря 2011 в 20:18, реферат

Краткое описание

Рассматривая нахождение химических элементов на Земле, обычно принимают во внимание три сферы «неживой» природы: атмосферу, гидросферу, литосферу (первичную оболочку Земли) и четвёртую сферу – область существования живых организмов (биосферу).

Содержание работы

Введение
Основная часть
Заключение
Список литературы

Содержимое работы - 1 файл

Реферат по химии.docx

— 139.33 Кб (Скачать файл)

 В медицине широко используются различные соединения кальция и магния:

а) карбонат кальция CaCO3 (обычно природного происхождения) входит в состав комплексных препаратов с витамином D (типа «Кальций-Д3-никомед»), используемых для укрепления костной системы организма;

б) растворы хлорида  кальция CaCl2 вводятся внутривенно для повышения свёртываемости крови;

в) из природного гипса при нагревании получают так  называемый жжёный гипс:

      2[CaSO4 · 2H2O]=150ºC[2CaSO4 · 2H2O] + 3H2O,

который используется в травматологии для изготовления гипсовых повязок при переломах, в стоматологии – для слепков  полости рта. Это основано на способности  жжёного гипса при смешивании с водой снова превращаться в  твёрдый гипс;

г) горькая (английская) соль MgSO4 · 7H2O – известное слабительное средство;

д) жжёная магнезия MgO широко используется как антицидное средство, т.е. как средство для понижения кислотности желудочного сока при язвенной болезни, гастрите и других заболеваниях;

е) тальк 3MgO · 4SiO · H2O – высушивающее средство, применяется в качестве присыпок. 
 

                                                      НАТРИЙ и КАЛИЙ 

Натрий и калий  являются биогенными элементами, т.е. элементами, играющими важную роль в живых  организмах, в частности, в организме  человека. Эти жизненно необходимые  элементы функционируют в паре. Надёжно установлено, что скорость диффузии ионов Na, и K через мембрану в покое мала, разность их концентрации вне клетки и внутри должна была в конечном итоге выровняться, если бы в клетке не существовало специального механизма, который обеспечивает активное выведение («выкачивание») из протоплазмы проникающих в неё ионов натрия и введение («нагнетание») ионов калия. Этот механизм получил название натрий – калиевого насоса.

Для того чтобы  сохранялась ионная асимметрия, натрий - калиевый насос должен выкачивать против градиента концентрации из клетки ионы натрия и нагнетать в неё  ионы калия и, следовательно, совершать  определённую работу.

Непосредственным  источником энергии для работы насоса является расщепление богатых энергией фосфорных соединений – АТФ, которое  происходит под влиянием фермента – аденозинтрифосфаты, локализованной в мембране и активируемой ионами натрия и калия. Торможение активности этого фермента, вызываемое некоторыми веществами, и приводит к нарушению работы насоса. Интересно, что по мере старения организма градиент концентрации ионов калия и натрия на границе клеток падает, а при наступление смерти выравнивается .

В медицине находят  широкое применение следующие соединения натрия и калия:

а) 0,9%-ый раствор  NaCl является физиологическим раствором, используется для инъекций;                                                                                                                                                              

б) пищевая сода NaHCO3 применяется как средство для понижения кислотности желудочного сока, поскольку вследствие гидролиза раствор NaHCO3 имеет слабощелочной характер среды;

в) глауберова соль Na2SO4 – известное слабительное средство;

г) перманганат  калия KMnO4 в виде разбавленных водных растворов используется как антисептическое средство для полосканий слизистых оболочек горла, промывания желудка при пищевых отравлениях и т.д. Его антисептические свойства, т.е. способность убивать болезнетворные микроорганизмы, обусловлены высокой окислительной активностью. 

Микроэлементы. 

К ним относится  отмеченный выше ряд 22 химических элементов, обязательно присутствующих в организме  человека. Заметим, что большинство  из них металлы, а из металлов основным является железо.  

                                                              ЖЕЛЕЗО

Несмотря на то, что содержание железа в человеке  массой 70кг не превышает 5г и суточное потребление 10 – 15мг, оно играет особую роль в жизни деятельности организма 

Железо занимает совершенно особое место, так как  на него не распространяется действие секреторной системы. Концентрация железа регулируется исключительно  его поглощением, а не выделением. В организме взрослого человека около 65% всего железа содержится в  гемоглобине и миоглобине, большая  часть оставшегося запасается в  специальных белках (ферритине и  гемосидерине), и только очень небольшая  часть находится в различных  ферментах и системах транспорта. 

                                                 Гемоглобин и миоглобин.

Гемоглобин выполняет  в организме важную роль переносчика  кислорода и принимает участие  в транспорте углекислоты. Общее  содержание гемоглобина равно 700г, а  кровь взрослых людей содержит в  среднем около 14 – 15%.

Гемоглобин представляет собой сложное химическое соединение (мол. вес. 68 800). Он состоит из белка  глобина и четырёх молекул  гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и  отдавать    молекулу кислорода. При этом валентность железа, к  которому присоединяется кислород, не изменяется, т. е. железо остаётся двухвалентным.

Оксигемоглобин  несколько отличается по цвету от гемоглобина, поэтому артериальная кровь, содержащая оксигемоглобин, имеет  ярко - алый цвет. Притом тем более  яркий, чем полнее произошло её насыщение  кислородом. Венозная кровь, содержащая большое количество восстановленного гемоглобина, имеет тёмно – вишнёвый цвет.

Метгемоглобин является окислительным гемоглобином, при образование которого меняется валентность железа: двухвалентное  железо, входящее в молекулу гемоглобина, превращается  в трёх валентное. В случае большого накопление в организме  метгемоглобина отдача кислорода тканям становится невозможной и наступает  смерть от удушения.

Карбоксигемоглобин  представляет собой соединение гемоглобина  с угарным газом. Это соединение примерно в 150 – 300 раз прочнее, чем  соединение гемоглобина с кислородом. Поэтому примесь даже 0,1% угарного газа во вдыхаемом воздухе ведёт  к тому, что 80% гемоглобина оказываются  связанными с окисью углерода и не присоединяют кислород, что является опасным для жизни.

Миоглобин. В  скелетной и сердечной мышце  находится миоглобин. Он способен связывать  до 14% общего количества кислорода в  организме. Это его свойство играет важную роль в снабжение кислородом работающих мышц. Если при сокращение мышцы кровеносные капилляры  её сжимаются и кровоток  в  некоторых участках мышцы прекращается, в течение некоторого времени  сохраняется снабжение мышечных волокон кислородом.    

                                                          Трансферрин. 

Трансферрин –  класс железо связывающих молекул. Наиболее изученный- это трансферрин  сыворотки – является транспортным белком, переносящим железо из обломков гемоглобина селезёнки и печени в костный мозг, где на специальных  его участках вновь синтезируется  гемоглобин. Весь сывороточный трансферрин, единовременно связывая только 4 мг железа, ежедневно переносит в  костный мозг около 40мг железа –  весьма существенное доказательство его  эффективности как транспортного  белка. Больные с генетически  обусловленными нарушениями синтеза  трансферрина страдают железодефицитной анемией, нарушениями иммунной системы  и интоксикацией от избытка железа!

      Трансферрин – это гликопротеин с молекулярной массой около 80 000. Он состоит из одной  полипептидной цепи, свёрнутой так, что она образует два компактных участка, каждый из которых способен связывать по одному иону железа (III). Правда, связывание железа возможно лишь при связывание аниона. В отсутствие подходящего аниона катион железа не присоединяется к трансфферину. В большинстве случаев в природе для этого используется карбонат, хотя активировать центр связывание металла способны и другие анионы, например оксалат, малонат, и цитрат.

      Высокая устойчивость комплекса железа с  трансферрином делает его отличным переносчиком, но зато и выдвигает  проблему высвобождения железа из комплекса. Многие из хороших хелатирующих агентов  малопригодны в качестве посредников  при высвобождение железа. Наиболее эффективным из них оказался пирофосфат. Принимая во внимание существенную роль в связывание железа с транферрином, было бы логически предложить, что  удаление аниона должно лежать в основе любого механизма высвобождение  железа, однако никакой корреляции между способностью замещать карбонат в трансферриновом комплексе  и их эффективностью как посредника в освобождение железа не найдено. В  транспортной системе микробов отдача ионов железа переносчиком вызывается восстановлением их до Fe (II), но, как достоверно установлено, из трансферрина железо высвобождается в виде Fe (III).  

                                                                Ферритин. 

      В органах млекопитающих железо  в основном запасается в двух  формах – ферритине и гемосидерине. Гемосидерин изучен не достаточно  хорошо и, возможно, является продуктом  распада ферритина. Ферритин в  настоящее время охарактеризован  довольно полно. Это водо-растворимый  белок, состоящий из 24 одинаковых  субъединиц, которые составляют  пустотелую сферическую оболочку. Во внутренней полости находится  мицелярное ядро, содержание железа  в котором примерно 57%. Мицела  может содержать до 4500 атомов  железа, если ферритин полностью  насыщен железом (что не является  обязательным). Белковую оболочку  пронизывают шесть каналов, которые  служат для приёма и отдачи  железа.

Приём железа происходит при каталитическом окислении аппоферритином Fe (II) в Fe (III), а высвобождение – при восстановление Fe (II) восстановленными флавинами. В большинстве клеток синтез ферритина значительно ускоряется в присутствии железа; в клетках печени крыс синтез субъединиц проходит за 2 – 3 мин.

Применение  в медицине соединений железа:

а) для лечения  железодефицитной анемии применяют  препараты, в состав которых входят соли двухвалентного железа (FeSO4 и др.);

б) в качестве дезинфицирующего и кровоостанавливающего  средства используется гексагидрат  хлорида железа (III) FeCl3 · 6H2O.

                                                                 СЕРЕБРО

Серебро обладает выраженным бактерицидным, антисептическим, противовоспалительным, вяжущим действием. Серебро - естественный бактерицидный  металл, эффективный против 650 видов  бактерий, которые не приобретают  к нему устойчивости, в отличие  от практически всех антибиотиков. Серебро действует антибиотически против многих простейших и даже вирусов. Предполагают, что серебро подавляет  ферменты, контролирующие энергетический обмен инфектантов.  
 

                                                                    МЕДЬ 

Недостаток в  организме меди приводит к деструкции кровеносных сосудов, патологическому  росту костей, дефектам в соединительных тканях. Кроме того, считают, что  дефицит меди служит одной из причин раковых заболеваний. В некоторых  случаях поражение легких раком  у людей пожилого возраста врачи  связывают с возрастным понижением меди в организме. Многое известно и  о транспорте меди в организме. Содержание меди в организме варьируется  от 100 до 150 мг с наибольшей концентрацией  в стволе мозга. Большой расход меди ведёт к  дефициту и неблагоприятен для человека. Прогрессирующие заболевание  мозга у детей (синдром Менкеса) связано с дефицитом меди, так  как при этом заболевание не хватает  медьсодержащего фермента. Некоторые  улучшения в состоянии этих больных  было получено при введение меди. Избыточное количество меди в организме также  неблагоприятно и ведет к развитию тяжелых заболеваний. При болезни  Вильсона содержание меди увеличивается  практически в 100 раз по сравнению  с нормой. Медь обнаруживается во многих тканях, но особенно её много в печени, почках и мозге. Её можно увидеть  на роговице в виде коричневых или  зелёных кругов. В настоящие время  установлено, что первоначально  избыточные концентрации меди возникают  в печени, затем в нервной системе, проявление расстройства этих органов  наступают в том же порядке. Симптомы болезни Вильсона включают цирроз печени, нарушение координации, прогрессирующие разрушение зубов. Степень выраженности симптомов зависит от количества содержание меди.

Несмотря на генетически зависимую природу  заболевания, отложение меди в тканях наблюдается не всегда. Медь откладывается  в определённые медь протеины печени, при болезни Вильсона происходит нарушение в синтезе апоцерулоплазмина  таким образом, что медь не может  связываться с этими белками  и начинает откладываться в других местах. Понятно, что это не может  служить единственным объяснением, так как у ряда пациентов уровень  церулоплазмина понижен незначительно. Кроме того, в больших количествах  медь обнаруживается в печени новорождённых, причём 2% общего количества меди связано  с белком. Через три месяца концентрация снижается до нормального уровня, с того времени печень способна синтезировать  белок цирулоплазмин. Существует другая точка зрения на болезнь Вильсона: структура белка металлотеонина при болезни Вильсона нарушена, и  это ведёт к повышенному связыванию ионов меди, что в свою очередь ведёт к нарушению запасов и транспорта меди в организме. У пациентов с болезнью Вильсона было продемонстрировано повышенное связывание меди металлотионеином.

Информация о работе Химические элементы в организме человека