Автор работы: Пользователь скрыл имя, 27 Января 2012 в 09:24, контрольная работа
Условие:
Однородный груз сосредоточен у m поставщиков в объемах a1, a2, ... am.
Данный груз необходимо доставить n потребителям в объемах b1, b2 ... bn.
Известны Cij , i=1,2,...m; j=1,2,...n — стоимости перевозки единиц груза от каждого i-го поставщика каждому j-му потребителю.
Требуется составить такой план перевозок, при котором запасы всех поставщиков вывозятся полностью, запросы всех потребителей удовлетворяются полностью, и суммарные затраты на перевозку всех грузов являются минимальными.
Процесс построения математической модели для решения задачи начинается, как правило, с ответов на следующие вопросы:
После ответа на данные вопросы для построения модели остается только идентифицировать переменные и представить цель и ограничения в виде математических функций этих переменных.
Надлежащий анализ вопросов подобного рода и корректная формулировка математической модели являются центральным звеном решения задач линейной (и не только линейной) оптимизации.
Эффективным
средством решения задач
Отметим, что применительно к задачам оптимизации производственной программы предприятия наиболее типичными задачами линейной оптимизации являются оптимизация дохода, прибыли, себестоимости, номенклатуры производимой продукции, затрат станочного времени и т.п.
Рассмотрим использование информационных технологий решения задач линейной оптимизации на ряде конкретных примеров, имеющих непосредственное отношение к практике принятия управленческих решений.