Система линейных уравнений

Автор работы: Гульнара Ситдикова, 02 Августа 2010 в 17:56, реферат

Краткое описание

Система линейных уравнений имеет вид:
a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2 (5.1)
……………………………..
am1x2 + am2x2 +... + amnxn = bm
Здесь аij и bi (i = ; j = ) - заданные, а xj - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:
[+-+-+]
AX = B, (5.1)
где A = (аij) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1, x2,..., xn)T, B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi..
Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC ≡ B.

Содержание работы

I Критерий совместимости……………………………………...………….3
II Метод Гаусса…………………………………………….…………….….5
III Формулы Крамера…………………………………….…..……………11
IV Матричный метод……………………………………………………...14
Список используемой литературы………………….……………………15

Содержимое работы - 1 файл