Автор работы: Пользователь скрыл имя, 21 Марта 2012 в 20:23, реферат
Планирование и управление комплексом работ по проекту представляет собой сложную и, как правило, противоречивую задачу. Оценка временных и стоимостных параметров функционирования системы, осуществляемая в рамках этой задачи, производится различными методами. Среди существующих большое значение имеет метод сетевого планирования.
Методы сетевого план
Введение
Планирование и управление комплексом работ по проекту представляет собой сложную и, как правило, противоречивую задачу. Оценка временных и стоимостных параметров функционирования системы, осуществляемая в рамках этой задачи, производится различными методами. Среди существующих большое значение имеет метод сетевого планирования.
Методы сетевого планирования могут широко и успешно применяются для оптимизации планирования и управления сложными разветвленными комплексами работ, которые требуют участия большого числа исполнителей и затрат ограниченных ресурсов.
Следует отметить, что главной целью сетевого планирования является сокращение до минимума продолжительности проекта, таким образом, использование сетевых моделей обусловлено необходимостью грамотного управления крупными народнохозяйственными комплексами и проектами, научными исследованиями, конструкторской и технологической подготовкой производства, новых видов изделий, строительством и реконструкцией, капитальным ремонтом основных фондов и т.п.
С помощью сетевой модели руководитель работ или операции может системно и масштабно представлять весь ход работ или оперативных мероприятий, управлять процессом их осуществления, а также маневрировать ресурсами.
1. Понятие сетевого планирования.
Сетевое планирование – метод управления, который основывается на использовании математического аппарата теории графов и системного подхода для отображения и алгоритмизации комплексов взаимосвязанных работ, действий или мероприятий для достижения четко поставленной цели.
Сетевое планирование позволяет определить, во-первых, какие работы или операции из числа многих, составляющих проект, являются "критическими" по своему влиянию на общую календарную продолжительность проекта и, во-вторых, каким образом построить наилучший план проведения всех работ по данному проекту с тем, чтобы выдержать заданные сроки при минимальных затратах.
Сетевое планирование основываются на разработанных практически одновременно и независимо методе критического пути МКП (СРМ — Critical Path Method) и методе оценки и пересмотра планов ПЕРТ (PERT — Program Evaluation and Review Technique).
Методы сетевого планирования применяются для оптимизации планирования и управления сложными разветвленными комплексами работ, требующими участия большого числа исполнителей и затрат ограниченных ресурсов.
Основная цель сетевого планирования - сокращение до минимума продолжительности проекта.
Задача сетевого планирования состоит в том, чтобы графически, наглядно и системно отобразить и оптимизировать последовательность и взаимозависимость работ, действий или мероприятий, обеспечивающих своевременное и планомерное достижение конечных целей. Для отображения и алгоритмизации тех или иных действий или ситуаций используются экономико-математические модели, которые принято называть сетевыми моделями, простейшие из них - сетевые графики. С помощью сетевой модели руководитель работ или операции имеет возможность системно и масштабно представлять весь ход работ или оперативных мероприятий, управлять процессом их осуществления, а также маневрировать ресурсами.
Важная особенность СПУ (сетевого планирования и управления) заключается в системном подходе к вопросам организации управления, согласно которому коллективы исполнителей, принимающие участие в комплексе работ и объединенные общностью поставленных перед ними задач, несмотря на разную ведомственную подчиненность, рассматриваются как звенья единой сложной организационной системы.
Использование методов сетевого планирования способствует сокращению сроков создания новых объектов на 15-20%, обеспечению рационального использования трудовых ресурсов и техники.
В основе сетевого планирования лежит построение сетевых диаграмм. Сетевая диаграмма (сеть, граф сети, PERT-диаграмма) — графическое отображение работ проекта и зависимостей между ними. В СПУ под термином "сеть" понимается полный комплекс работ и вех проекта с установленными между ними зависимостями.
Выделяют два типа сетевых диаграмм – сетевая модель типа "вершина-работа" и "вершина-событие" или "дуги-работы".
Сетевые диаграммы первого типа отображают сетевую модель в графическом виде как множество вершин, соответствующих работам, связанных линиями, представляющими взаимосвязи между работами. Так же этот тип диаграмм называют диаграммой предшествования—следования. Он является наиболее распространенным представлением сети.
Другой тип сетевой диаграммы — сеть типа "вершина—событие", на практике используется реже. При данном подходе работа представляется в виде линии между двумя событиями (узлами графа), которые, в свою очередь, отображают начало и конец данной работы. PERT-диаграммы являются примерами этого типа диаграмм.
Можно выделить следующие методы сетевого планирования:
Детерминированные сетевые методы
o Диаграмма Ганта
o Метод критического пути (МКП)
Вероятностные сетевые методы
o Неальтернативные
o Альтернативные
Метод графической оценки и анализа (GERT).
2. Методы сетевого планирования.
Существуют разные методы сетевого планирования.
Модели, в которых взаимная последовательность и продолжительности работ заданы однозначно, называются детерминированными сетевыми моделями. К наиболее популярным детерминированным моделям относятся метод построения диаграмм Ганта и метод критического пути (CPM).
Если о продолжительности каких-то работ заранее нельзя задать однозначно или если могут возникнуть ситуации, при которых изменяется запланированная заранее последовательность выполнения задач проекта, например, существует зависимость от погодных условий, ненадежных поставщиков или результатов научных экспериментов, детерминированные модели неприменимы. Чаще всего такие ситуации возникают при планировании строительных, сельскохозяйственных или научно-исследовательских работ. В этом случае используются вероятностные модели, которые делятся на два типа:
неальтернативные – если зафиксирована последовательность выполнения работ, а продолжительность всех или некоторых работ характеризуется функциями распределения вероятности;
альтернативные – продолжительности всех или некоторых работ и связи между работами носят вероятностный характер.
К наиболее распространенным методам вероятностного сетевого планирования относятся:
метод оценки и анализа программ (PERT);
метод имитационного моделирования или метод Монте-Карло;
метод графической оценки и анализа программ (GERT).
3. Диаграмма Ганта.
Одним из наиболее распространенных способов наглядного представления производственного процесса или проекта во времени является линейный или ленточный календарный график - Диаграмма Ганта.
Диаграмма Ганта — горизонтальная линейная диаграмма, на которой задачи проекта представляются протяженными во времени отрезками, характеризующимися датами начала и окончания, задержками и, возможно, другими временными параметрами.
Диаграмма Ганта представляет собой график, в котором процесс представлен в двух видах. В левой части проект представлен в виде списка задач (работ, операции) проекта в табличном виде с указанием названия задачи и длительности ее выполнения, а часто и работ, предшествующих той или иной задаче. В правой части каждая задача проекта, а точнее длительность ее выполнения, отображается графически, обычно в виде отрезка определенной длины с учетом логики выполнения задач проекта.
Рис. 2. Диаграмма Ганта.
В верхней, правой части диаграммы Ганта располагается шкала времени. Длина отрезка и его расположение на шкале времени определяют время начала и окончания каждой задачи. Кроме того, взаимное расположение отрезков задач показывает, следуют ли задачи одна за другой или происходит их параллельное выполнение.
Наиболее широко график Ганта использовался в строительстве. В качестве расписания работ график Ганта вполне пригоден, но когда возникает необходимость изменения структуры работ, приходится все работы пересматривать заново, учитывая все многообразие возможных технологических связей между ними. И чем сложнее работы, тем сложнее использовать график Ганта. Тем не менее даже после появления сетевых моделей график Ганта продолжает использоваться как средство представления временных аспектов работ на конечных стадиях календарного планирования, когда продолжительность проекта оптимизирована с помощью сетевых моделей. График Ганта может также использоваться для элементарного контроля работ. Он используется для отражения текущего состояния проекта (статуса проекта) с точки зрения соблюдения сроков.
4. Метод критического пути (МКП).
Метод критического пути позволяет рассчитать возможные календарные графики выполнения комплекса работ на основе описанной логической структуры сети и оценок продолжительности выполнения каждой работы, определить критический путь для проекта в целом.
В основе метода лежит определение наиболее длительной последовательности задач от начала проекта до его окончания с учетом их взаимосвязи. Задачи лежащие на критическом пути (критические задачи) имеют нулевой резерв времени выполнения и в случае изменения их длительности изменяются сроки всего проекта. В связи с этим при выполнении проекта критические задачи требуют более тщательного контроля, в частности, своевременного выявления проблем и рисков, влияющих на сроки их выполнения и, следовательно, на сроки выполнения проекта в целом. В процессе выполнения проекта критический путь проекта может меняться, так как при изменении длительности задач некоторые из них могут оказаться на критическом пути.
Метод критического пути исходит из того, что длительность операций можно оценить с достаточно высокой степенью точности и определенности.
Основным достоинством метода критического пути является возможность манипулирования сроками выполнения задач, не лежащих на критическом пути.
Календарное планирование по МКП требует определенных входных данных. После их ввода производится процедура прямого и обратного прохода по сети и вычисляется выходная информация.
Рис. 3. Расчет по методу критического пути
Для расчета календарного графика по МКП требуются следующие входные данные:
- набор работ;
- зависимости между работами;
- оценки продолжительности каждой работы;
- календарь рабочего времени проекта (в наиболее общем случае возможно задание собственного календаря для каждой работы);
- календари ресурсов;
- ограничения на сроки начала и окончания отдельных работ или этапов;
- календарная дата начала проекта.
Прямой расчет – определение минимально возможного времени реализации проекта начинается с работ, не имеющих предшественников. В ходе его определяется ES (ранний старт) и EF (ранний финиш). Ранние начала и ранние окончания работ определяются последовательно, слева направо по графику, то есть от исходного события сети к завершающему.
Обратный расчет. Определяются LS (поздний старт), LF (поздний финиш) и R (резерв). Поздние начала и поздние окончания определяются в обратном порядке – от завершающегося события графика к исходящему, то есть справа налево.
Таким образом, критический путь – это последовательность операций, не имеющих резерва.
Анализ по методу критического пути представляет собой эффективный метод оценки:
Задач, которые необходимо решить.
Возможности параллельного выполнения работ.
Наименьшего времени выполнения проекта.
Производственных ресурсов, необходимых для выполнения проекта.
Последовательности выполнения работ, включая составление графиков и определение продолжительности выполнения работ.
Очередность решения задач.
Наиболее эффективного способа сокращения продолжительности выполнения проекта в случае его срочности.
Эффективность анализа по методу критического пути может повлиять на результат проекта, будет он успешным или неудачным. Также анализ может быть очень полезен для оценки важности проблемы, с которой можно столкнуться в ходе внедрения плана.
5. Метод имитационного моделирования (метод Монте-Карло).
Метод Монте-Карло (методы Монте-Карло, ММК) — общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи.
Суть данного метода состоит в том, что результат испытания зависит от значения некоторой случайной величины, распределенной по заданному закону. Поэтому результат каждого отдельного испытания также носит случайный характер. Проведя серию испытаний, получают множество частных значений наблюдаемой характеристики (выборку). Полученные статистические данные обрабатываются и представляются в виде численных оценок интересующих исследователя величин (характеристик системы).
Важной особенностью данного метода является то, что его реализация практически невозможна без использования компьютера.
Метод Монте-Карло имеет две особенности:
1) простая структура вычислительного алгоритма;
2) погрешность вычислений, как правило, пропорциональна D/N, где D - некоторая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т.е. объем работы) в 100 раз.
Добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей: