Автор работы: Пользователь скрыл имя, 13 Февраля 2012 в 11:08, реферат
Современная жизнь немыслима без эффективного управления. Важной категорией являются системы обработки информации, от которых во многом зависит эффективность работы любого предприятия или учреждения. Такая система должна:
- обеспечивать получение общих и/или детализированных отчетов по
итогам работы;
- позволять легко определять тенденции изменения важнейших
Введение………………………………………………………………………………2
1. Классические модели данных…………………………………………………….4
2. Сравнение классических моделей данных………………………………………9
Заключение……………………………………………………………………………12
Список использованной литературы………………………………………………..14
Содержание
Введение…………………………………………………………
1. Классические модели данных…………………………………………………….4
2. Сравнение классических моделей данных………………………………………9
Заключение……………………………………………………
Список
использованной литературы………………………………………………..
Введение
Современная жизнь немыслима без эффективного управления. Важной категорией являются системы обработки информации, от которых во многом зависит эффективность работы любого предприятия или учреждения. Такая система должна:
- обеспечивать получение общих и/или детализированных отчетов по
итогам работы;
- позволять легко определять тенденции изменения важнейших
показателей;
- обеспечивать получение информации, критической по времени, без
существенных задержек;
- выполнять точный и полный анализ данных.
Современные системы управления базами данных (СУБД) в основном являются приложениями Windows, так как данная среда позволяет более полно использовать возможности персональной ЭВМ, нежели среда DOS. Снижение стоимости высокопроизводительных ПК обусловил не только широкий переход к среде Windows, где разработчик программного обеспечения может в меньшей степени заботиться о распределении ресурсов, но также сделал программное обеспечение ПК в целом и СУБД в частности менее критичными к аппаратным ресурсам ЭВМ. Среди наиболее ярких представителей систем управления базами данных можно отметить: Lotus Approach, Microsoft Access, Borland dBase, Borland Paradox, Microsoft Visual FoxPro, Microsoft Visual Basic, а также баз данных Microsoft SQL Server и Oracle, используемые в приложениях, построенных по технологии «клиент-сервер». Фактически, у любой современной СУБД существует аналог, выпускаемый другой компанией, имеющий аналогичную область применения и возможности, любое приложение способно работать со многими форматами представления данных, осуществлять экспорт и импорт данных благодаря наличию большого числа конвертеров. Общепринятыми, также, являются технологии, позволяющие использовать возможности других приложений, например, текстовых процессоров, пакетов построения графиков и т.п., и встроенные версии языков высокого уровня (чаще – диалекты SQL и/или VBA) и средства визуального программирования интерфейсов разрабатываемых приложений. Поэтому уже не имеет существенного значения, на каком языке и на основе какого пакета написано конкретное приложение, и какой формат данных в нем используется. Более того, стандартом «де-факто» стала «быстрая разработка приложений» или RAD (от английского Rapid Application Development), основанная на широко декларируемом в литературе «открытом подходе», то есть необходимость и возможность использования различных прикладных программ и технологий для разработки более гибких и мощных систем обработки данных. Поэтому в одном ряду с «классическими» СУБД все чаще упоминаются языки программирования Visual Basic 4.0 и Visual C++, которые позволяют быстро создавать необходимые компоненты приложений, критичные по скорости работы, которые трудно, а иногда невозможно разработать средствами «классических» СУБД. Современный подход к управлению базами данных подразумевает также широкое использование технологии «клиент-сервер».
Таким образом, на сегодняшний день разработчик не связан рамками какого-либо конкретного пакета, а в зависимости от поставленной задачи может использовать самые разные приложения. Поэтому, более важным представляется общее направление развития СУБД и других средств разработки приложений в настоящее время.
Цель
работы - описать структуру иерархической,
сетевой и реляционной моделей
данных, показать их недостатки и достоинства.
1.
Классические модели
данных
Иерархическая модель данных.
В
иерархической модели связи между
данными можно описать с
Корневым называется тип, который имеет подчиненные типы и сам не является подтипом. Подчинённый тип (подтип) является потомком по отношению к типу, который выступает для него в роли предка (родителя). Потомки одного и того же типа являются близнецами по отношению друг к другу.
B
целом тип «дерево»
Иерархическая БД, представляет собой упорядоченную совокупность экземпляров данных типа «дерево» (деревьев), содержащих экземпляры типа «запись» (записи). Часто отношения родства между типами переносят на отношения между самими записями. Поля записей хранят собственно числовые или символьные значения, составляющие основное содержание БД. Обход всех элементов иерархической БД обычно производится сверху вниз и слева направо.
В иерархических СУБД может использоваться терминология, отличающаяся от приведенной. Так, в системе IMS понятию «запись» соответствует термин «сегмент», а под «записью БД» понимается вся совокупность записей, относящаяся к одному экземпляру типа «дерево».
Для организации физического размещения иерархических данных в памяти ЭВМ могут использоваться следующие группы методов:
К основным операциям манипулирования иерархически организованными данными относятся следующие:
B соответствии с определением типа «дерево», можно заключить, что между предками и потомками автоматически поддерживается контроль целостности связей. Основное правило контроля целостности формулируется следующим образом: потомок не может существовать без родителя, а у некоторых родителей может не быть потомков. Механизмы поддержания целостности связей между записями различных деревьев отсутствуют.
K достоинствам иерархической модели данных относятся эффективное использование памяти ЭВМ и неплохие показатели времени выполнения основных операций над данными. Иерархическая модель данных удобна для работы с иерархически упорядоченной информацией. Недостатком иерархической модели является ее громоздкость для обработки информации с достаточно сложными логическими связями, а также сложность понимания для обычного пользователя. На иерархической модели данных основано сравнительно ограниченное количество СУБД, в числе которых можно назвать зарубежные системы IMS, PC/Focus, Теаm-Up и Data Еdgе, а также отечественные системы Ока, ИНЭС и МИРИС.
Сетевая модель данных.
Сетевая
модель данных позволяет отображать
разнообразные взаимосвязи
Физическое размещение данных в базах сетевого типа может быть организовано практически теми же методами, что и в иерархических базах данных.
K
числу важнейших операций
Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности. B сравнении с иерархической моделью сетевая модель предоставляет большие возможности в смысле допустимости образования произвольных связей.
Недостатком сетевой модели данных является высокая сложность и жесткость схемы БД, построенной на ее основе, а также сложность для понимания и выполнения обработки информации в БД обычным пользователем. Кроме того, в сетевой модели данных ослаблен контроль целостности связей вследствие допустимости установления произвольных связен между записями.
Системы на основе сетевой модели не получили широкого распространения на практике. Наиболее известными сетевыми СУБД являются следующие: IDMS, db_VistaIII, СЕТЬ, СЕТОР и КОМПАС.
Реляционная модель данных
Реляционная модель данных предложена сотрудником фирмы IBM Эдгаром Коддом и основывается на понятии отношение (relation).
Отношение представляет собой множество элементов, называемых кортежами. Подробно теоретическая основа реляционной модели данных рассматривается на следующем разделе. Наглядной формой представления отношения является привычная для человеческого восприятия двумерная таблица.
Таблица имеет строки (записи) и столбцы (колонки). Каждая строка таблицы имеет одинаковую структуру и состоит из полей. Строкам таблицы соответствуют кортежи, а столбцам - атрибуты отношения.
C
помощью одной таблицы удобно
описывать простейший вид
Физическое размещение данных в реляционных базах на внешних носителях легко осуществляется с помощью обычных файлов.
Достоинство реляционной модели данных заключается в простоте, понятности и удобстве физической реализации на ЭВМ. Именно простота и понятность для пользователя явились основной причиной их широкого использования. Проблемы же эффективности обработки данных этого типа оказались технически вполне разрешимыми.
Основными недостатками реляционной модели являются следующие: отсутствие стандартных средств идентификации отдельных записей и сложность описания иерархических и сетевых связей.
Примерами зарубежных реляционных СУБД для ПЭВМ являются следующие: DBaseIII Plus и dBase IY (фирма Ashton-Tate), DB2 (IBM), R:BASE (Microrim), FoxFro ранних версий и EoxBase (Fox Software), Раrаdох и dBASE for Windows (Borland), FoxFro более поздних версий, Visual FoxFro и Access (Microsoft), Clarion (Clarion Software), Ingres (ASK Computer Systems) и Oracle (Oracle).
К отечественным СУБД реляционного типа относятся системы: ПАЛЬМА (ИК АН УССР), а также система HyTech (МИФИ).
Заметим,
что последние версии реляционных
СУБД имеют некоторые свойства объектно-ориентированных
систем. Такие СУБД часто называют
объектно-реляционными. Примером такой
системы можно считать продукты
Oracle 8.х. Системы предыдущих версий вплоть
до Oracle 7.х считаются «чисто» реляционными.
2.
Сравнение классических
моделей данных
При сравнении моделей данных очень трудно отделить факторы, характеризующие принципиальные особенности модели, от факторов, связанных с реализацией этих моделей данных средствами конкретных СУБД.
Достоинства и недостатки реляционной модели.
Рассматривая преимущества и недостатки известных моделей данных, следует отметить ряд несомненных достоинств реляционного подхода: