Автор работы: Пользователь скрыл имя, 18 Января 2012 в 00:06, доклад
Доказательство - это выведение одного знания из другого, истинность которого ранее установлена и проверена человеческой практикой. Вот почему оно в конечном счете является сверкой теоретических положении и выводов с реальной действительностью. Использование научных открытий в практической деятельности трудно представить без подобной сверки.
Логически стройное и убедительное доказательство необходимо как в естественных, так и в гуманитарных науках. Следует подчеркнуть, что термин "доказательство" употребляется в нескольких значениях.
Во-первых, под доказательством понимают факты, при помощи которых обосновывается истинность того или иного положения.
Во-вторых, "доказательство" обозначает источники сведений о фактах: летописи, рассказы очевидцев, мемуары, документы и т.п. Например, аттестат зрелости П. -доказательство имеющегося у него среднего образования.
В-третьих, "доказательство" - это процесс мышления, в котором обосновывается истина какого-либо суждения (положения). В логике термин "доказательство" употребляется именно в этом значении.
Понятие доказательства и его строение
Доказательство - это выведение одного знания из другого, истинность которого ранее установлена и проверена человеческой практикой. Вот почему оно в конечном счете является сверкой теоретических положении и выводов с реальной действительностью. Использование научных открытий в практической деятельности трудно представить без подобной сверки.
Логически стройное и убедительное доказательство необходимо как в естественных, так и в гуманитарных науках. Следует подчеркнуть, что термин "доказательство" употребляется в нескольких значениях.
Во-первых, под доказательством понимают факты, при помощи которых обосновывается истинность того или иного положения.
Во-вторых, "доказательство" обозначает источники сведений о фактах: летописи, рассказы очевидцев, мемуары, документы и т.п. Например, аттестат зрелости П. -доказательство имеющегося у него среднего образования.
В-третьих, "доказательство" - это процесс мышления, в котором обосновывается истина какого-либо суждения (положения). В логике термин "доказательство" употребляется именно в этом значении.
Доказательство образует довольно расплывчатую совокупность, которую невозможно охватить одним универсальным определением. В логике принято говорить не о доказуемости вообще, а о доказуемости в рамках данной конкретной системы или теории. При этом допускается существование разных трактовок понятия "доказательство", относящихся к разным системам. Это необходимо иметь в виду при рассмотрении доказательства в рамках традиционной логики.
Итак, доказательство - это логическое рассуждение, в процессе которого подтверждается истинность какой-либо мысли с помощью других положений, проверенных теорией и практикой. Путем доказательства совершается переход от вероятного, недостоверного знания к достоверному. Его назначение - служить сверкой теоретических положений и выводов с реальной действительностью.
Доказательство тесно
связано с убеждением, но не тождественно
ему: доказательства должны основываться
на данных науки и конкретной практики.
Убеждения не могут быть основаны,
например, на вере, на предрассудках, на
неосведомленности людей в
ЛОГИЧЕСКИЕ ПРАВИЛА ДОКАЗАТЕЛЬСТВА И ОПРОВЕРЖЕНИЯ
ПРАВИЛА
ОШИБКИ
быть точно
1. Тезис должен сформулирован
2. Тезис должен
оставаться одним и тем же
в процессе всего
а) "подмена тезиса" - доказывается (опровергается) новый тезис
б) "довод к
человеку" - доказательство (опровержение)
тезиса подменяется оценкой
в) "довод к публике" - стремление воздействовать на чувства слушающих
3. Основания должны быть истинными, доказанными, не подлежащими сомнению
4. Основания должны
доказываться независимо от
а) "основное заблуждение" - тезис обосновывается ложными аргументами
б) "предвосхищение основания" - аргументы нуждаются в собственном обосновании
в) "порочный круг" - аргументы доказываются посредством тезиса
5. Доказательство (опровержение) должно строиться по общим правилам умозаключения
а) "мнимое следование" - тезис не следует из приведенных оснований
б) "от сказанного с условием к сказанному безусловно" - аргументы, истинные при определенных условиях, приводятся в качестве истинных при любых условиях