Автор работы: Пользователь скрыл имя, 06 Января 2011 в 15:45, реферат
В последние годы все большее влияние на здоровье населения планеты оказывает качество и структура питания. В 1999 г. опубликованы данные, что ежегодно в мире от недоедания и белково-калорийной недостаточности погибает 15 млн. человек.
1. ВВЕДЕНИЕ
2. ЧТО ТАКОЕ ТРАНСГЕННЫЕ ПРОДУКТЫ
3. МЕТОДЫ СОЗДАНИЯ ТРАНСГЕННЫХ ПРОДУКТОВ
4. КАК ТРАНСГЕННЫЕ ПРОДУКТЫ ОТЛИЧИТЬ ОТ НАТУРАЛЬНЫХ
5. ЕСТЬ ИЛИ НЕ ЕСТЬ ТРАНСГЕННЫЕ ПРОДУКТЫ
6. СТОИТ ЛИ БОЯТЬСЯ ПОСЛЕДСТВИЙ
7. ЗАКЛЮЧЕНИЕ
8. СПИСОК ЛИТЕРАТУРЫ
В последние годы все большее влияние на здоровье населения планеты оказывает качество и структура питания. В 1999 г. опубликованы данные, что ежегодно в мире от недоедания и белково-калорийной недостаточности погибает 15 млн. человек.
Результаты широких эпидемиологических исследований и организованного в последние годы Минздравом России мониторинга состояния питания показывают, что структура питания населения России характеризуется продолжающимся снижением потребления наиболее ценных в биологическом отношении пищевых продуктов. Как следствие сложившейся структуры питания на первый план выходят следующие нарушения пищевого статуса:
В
международном научном
Принцип создания трансгенных растений и животных схожи. И в том, и в другом случае в ДНК искусственно вносятся чужеродные последовательности, которые встраивают, интегрируют генетическую информацию вида.
Основные объекты генной инженерии в растительном мире: соя, кукуруза, картофель, хлопчатник, сахарная свекла. При этом вырабатывается повышенная резистентность к колорадскому жуку, к вирусам, защита от насекомых, от всяких бурильщиков, сосальщиков, обеспечивает отсутствие повышенных остаточных количеств пестицидов. Возможно улучшение коммерческих показателей: у томатов – увеличение сроков хранения, у картофеля – повышение крахмалистости, обогащение аминокислотами, витаминами.
Путем генной инженерии возможно повышение урожайности на 40-50%. За последние 5 лет в мире земельные площади, используемые под трансгенные растения, увеличились с 8 млн. га до 46 млн. га.
Нужно отметить, что ни одна новая технология не была объектом такого пристального внимания ученых всего мира. Все это обусловлено тем, что мнения ученых о безопасности генетически модифицированных источников питания расходятся. Нет ни одного научного факта против использования трансгенных продуктов. В тоже время некоторые специалисты считают, что существует риск выпуска нестабильного вида растений, передача заданных свойств сорнякам, влияние на биоразнообразие планеты, и главное – потенциальная опасность для биологических объектов, для здоровья человека путем переноса встроенного гена в микрофлору кишечника или образование из модифицированных белков под воздействием нормальных ферментов, так называемых минорных компонентов, способных оказывать негативное влияние.
Трансгенными
могут называться те виды растений,
в которых успешно
Что такое генетически измененный продукт? Это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи; чтобы скот быстрее набирал вес, ему вкалывают измененный гормон роста (но при этом молоко наполняется гормонами, вызывающими рак); чтобы соя не боялась гербицидов, в нее внедряют гены петунии, а также некоторых бактерий и вирусов. Соя – один из основных компонентов многих кормов для скота и почти 60% продуктов питания. К счастью, в России, как и во многих странах Европы, генетически измененные сельхозкультуры (в мире их создано больше 30-ти видов) пока не распространяются такими бешеными темпами, как в США, где официально закреплена идентичность "натуральных" и "трансгенных" продуктов питания. Поэтому у нас только самые "продвинутые" покупатели с подозрением относятся к импортным чипсам, томатным соусам, консервированной кукурузе и "ножкам Буша".
На данный момент в России зарегистрировано множество видов продуктов из модифицированной сои, среди которых: фитосыр, смеси функциональные, сухие заменители молока, мороженое "Сойка-1", 32 наименования концентратов соевого белка, 7 видов соевой муки, модифицированные бобы сои, 8 видов соевых белковых продуктов, 4 наименования соевых питательных напитков, крупка соевая обезжиренная, комплексные пищевые добавки в ассортименте и специальные продукты для спортсменов, тоже в немалом количестве. Также Департамент государственного санитарно-эпидемиологического надзора выдал "сертификаты качества" одному сорту картофеля и двум сортам - кукурузы.
Надзор за генетически модифицированными продуктами осуществляется Научно-исследовательским институтом питания РАМН и также учреждениями-соисполнителями: Институтом вакцин и сывороток им. И. И. Мечникова РАМН, Московским научно-исследовательским институтом гигиены им. Ф.Ф. Эрисмана Минздрава России.
Последнее
десятилетие ученые строят неутешительные
прогнозы относительно быстрорастущего
потребления
Получение
трансгенных растений является на данный
момент одной из перспективных и
наиболее развивающихся направлений
агропроизводства. Существуют проблемы,
которые не могут быть решены такими
традиционными направлениями
Создание трансгенных растений в настоящее время развиваются по следующим направлениям:
1.
Получение сортов
2.
Получение
3.
Создание сортов
4.
Создание сортов
5.
Создание сортов растений, способных
синтезировать некоторые белки
животного происхождения (
Таким образом, создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Кроме того, уходят в небытие пестициды и другие виды ядохимикатов, которые нарушали естественный баланс в локальных экосистемах и наносили невосполнимый ущерб окружающей среде.
Создать геноизмененное растение на данном этапе развития науки для генных инженеров не составляет большого труда.
Существует
несколько достаточно широко распространенных
методов для внедрения
Метод 1:
Существует бактерия Agrobacterium tumefaciens (Лат.- полевая бактерия, вызывающая опухоли), которая обладает способностью встраивать участки своей ДНК в растения, после чего пораженные клетки растения начинают очень быстро делиться и образуется опухоль. Сначала ученые получили штамм этой бактерии, не вызывающий опухолей, но не лишенный возможности вносить свою ДНК в клетку. В дальнейшем нужный ген сначала клонировали в Agrobacterium tumefaciens и затем заражали уже этой бактерией растение. После чего инфецированые клетки растения приобретали нужные свойства, а вырастить целое растение из одной его клетки сейчас не проблема.
Метод 2:
Клетки, предварительно обработанные специальными реагентами, разрушающими толстую клеточную оболочку, помещают в раствор, содержащий ДНК и вещества, способствующие ее проникновению в клетку. После чего выращивали из одной клетки целое растение.
Метод 3:
Существует
метод бомбардировки
Итак, задача, которую надо решить при создании трансгенного растения – организма с такими генами, которые ему от природы "не положены", – это выделить нужный ген из чужой ДНК и встроить его в молекулу ДНК данного растения. Процесс этот весьма сложен.
Более четверти века назад были открыты ферменты рестриктазы, разделяющие длинную молекулу ДНК на отдельные участки – гены, причем эти кусочки приобретают "липкие" концы, позволяющие им встраиваться в разрезанную такими же рестриктазами чужую ДНК.
Самый распространенный способ внедрения чужих генов в наследственный аппарат растений – с помощью болезнетворной для растений бактерии Agrobacterium tumefaciens. Эта бактерия умеет встраивать в хромосомы заражаемого растения часть своей ДНК, которая заставляет растение усилить производство гормонов, и в результате некоторые клетки бурно делятся, возникает опухоль. В опухоли бактерия находит для себя отличную питательную среду и размножается. Для генной инженерии специально выведен штамм агробактерии, лишенный способности вызывать опухоли, но сохранивший возможность вносить свою ДНК в растительную клетку.
Нужный
ген "вклеивают" с помощью рестриктаз
в кольцевую молекулу ДНК бактерии,
так называемую плазмиду. Эта же
плазмида несет ген устойчивости
к антибиотику. Лишь очень небольшая
доля таких операций оказывается
успешной. Те бактериальные клетки,
которые примут в свой генетический
аппарат "прооперированные" плазмиды,
получат кроме нового полезного
гена устойчивость к антибиотику. Их
легко будет выявить, полив культуру
бактерий антибиотиком, – все прочие
клетки погибнут, а удачно получившие
нужную плазмиду размножатся. Теперь этими
бактериями заражают клетки, взятые, например,
из листа растения. Опять приходится
провести отбор на устойчивость к
антибиотику: выживут лишь те клетки,
которые приобрели эту
Однако
этот метод "работает" не на всех
растениях: агробактерия, например, не
заражает такие важные пищевые растения,
как рис, пшеница, кукуруза. Поэтому
разработаны другие способы. Например,
можно ферментами растворить толстую
клеточную оболочку растительной клетки,
мешающую прямому проникновению
чужой ДНК, и поместить такие
очищенные клетки в раствор, содержащий
ДНК и какое-либо химическое вещество,
способствующее ее проникновению в
клетку (чаще всего применяется