Стихийные бедствия гидрологического характера и их последствия

Автор работы: Пользователь скрыл имя, 08 Января 2012 в 09:29, реферат

Краткое описание

Стихийные, не подвластные человеку силы вызывают катастрофы и наносят населению планеты огромный ущерб. По данным ООН, только за последние 20 лет на нашей планете стихия унесла более 3 млн. человеческих жизней. Около 1 млн. жителей на Земле за этот период испытали последствия стихийных бедствий. Стихия вынуждает людей учиться выживанию, анализировать свои поступки, чтобы встретить любое проявление природы осмысленно без паники.

Содержание работы

Введение……………………………………………3
Наводнение…………………………………………4
Группы наводнений………………………………..5
Действия во время чрезвычайной ситуации…………….7
Спасательные работы при наводнениях………………...9
Наводнения в России……………………………………..10
Заторы и зажоры льда на реках…………………………..11
Ветровые нагоны…………………………………………..12
Цунами……………………………………………………..13
Причины цунами…………………………………………..15
Системы предупреждения цунами………………………………….16
Цунами в Северо-Курильске……………………………………………..17
Вывод…………………………………………………………………………………22

Содержимое работы - 1 файл

Фупр-5-Лосева М.В.-стихийные бедствия.docx

— 20.99 Кб (Скачать файл)

Наводнения в России

По метеорологическим условиям все регионы России различны. Однако наводнения происходят практически ежегодно то в одном, то в другом районе. Ущерб исчисляется огромными цифрами. Площадь, которая может быть подвергнута затоплению паводковыми водами, составляет около 500 тыс. км2, однако ежегодно реально затапливается от 36 до 56 тыс. км2.

Наиболее велико негативное влияние наводнений в следующих бассейнах рек Амура, Уссури, Имана, Зеи, Бурей, рек Сибири, впадающих в северные моря, и рек Северного Кавказа.

Наводнение в Томске

            Из истории Москвы известно, что наводнения на Москве-реке бывали нередко (весной, случались и в летнее время) и приносили большие бедствия городу. Так, в летописи за 1496 говорится о лютой морозной зиме, больших снегах и великом паводке. В июле 1518 и августе 1566 наводнения произошли в результате длительных непрерывных дождей. В XVII в. отмечены три весенних наводнения: в 1607, 1655 (была повреждена южная стена Кремля, разрушено множество домов) и в 1687 (снесено 4 наплавных моста через реку). В XVIII в. упоминается о шести наводнениях: 1702, 1703, 1709, 1778, 1783 и 1788; в 1783 от наводнений пострадали опоры Большого Каменного моста. При наводнениях в 1788, 1806, 1828 и 1856 были сделаны отметки на башне Новодевичьего монастыря и стенах некоторых зданий. Одно из самых больших наводнений на Москве-реке было в 1908, во время которого максимальный расход воды составил 2860 м³/с. Вода в реке поднялась на 8,9 м выше постоянного летнего горизонта, на набережных у Кремля слой её доходил до 2,3 м. Река и Водоотводный канал слились в одно русло шириной 1,5 км. Было затоплено 16 км² территории города. Во время наводнения 1926 максимальный расход составил 2140 м³/с, подъём воды над меженью — 7,3 м. Следующее и последнее наводнение было в 1931 (подъём воды 6,8 м). Ныне в верхней части бассейна Москвы-реки сооружены Истринское, Можайское, Русское и Озернинское водохранилища, которые регулируют сток. Кроме того, русло реки в черте города местами расширено, резкие изгибы спрямлены, берега укреплены гранитными стенками набережных. После этого наводнения в черте города проходили почти незаметно.

ЗАТОРЫ и ЗАЖОРЫ льда на реках

Затор – это скопление льда в русле, ограничивающее течение реки. В результате происходит подъем воды и ее разлив.

Затор образуется обычно в конце зимы и в весенний период при вскрытии рек во время разрушения ледяного покрова. Состоит он из крупных и мелких льдин.

Зажор– явление, сходное с затором льда. Однако во-первых, зажор состоит из скопления рыхлого льда (шуга, небольшие льдинки), тогда как затор есть скопление крупных и в меньшей степени небольших льдин. Во-вторых, зажор льда наблюдается в начале зимы, в то время как затор – в конце зимы и весной.

Главной причиной образования затора является задержка процесса вскрытия льда на тех реках, где кромка ледяного покрова весной смещается сверху вниз по течению.  При этом движущийся сверху раздробленный лед встречает на своем пути еще не нарушенный ледяной покров. Последовательность вскрытия реки сверху вниз по течению является необходимым, но недостаточным условием возникновения затора льда.  Основное условие создается только тогда, когда поверхностная скорость течения воды при вскрытии довольно значительна (0,6 – 0,8 м/с и более). Различные русловые препятствия, как, например, крутые повороты, сужения, острова, изменение уклона поверхности от большого к меньшему, лишь усиливает процесс.

Зажоры образуются на реках в период формирования ледяного покрова.  Необходимым условием образования является возникновение в русле внутриводного льда и его вовлечение под кромку ледяного покрова.  Решающее значение при этом имеет поверхностная скорость течения (более 0,4 м/с), а также температура воздуха в период замерзания. Образованию зажоров способствуют острова, отмели, валуны, крутые повороты, сужение русла.  Скопление шуги и другого рыхлого ледяного материала, образующегося на этих участках в результате непрерывного процесса образования внутри водяного льда и разрушения ледяного покрова, вызывает стеснение водного сечения, вследствие чего происходит подъем воды выше по течению. 

ВЕТРОВЫЕ НАГОНЫ – это подъем уровня воды, вызванный воздействием ветра на водную поверхность. Такие явления случаются в морских устьях крупных рек, а также на больших озерах и водохранилищах.

Ветровой нагон, так же как половодье, затор, зажор является стихийным бедствием, если уровень воды настолько высок, что происходит затопление городов и населенных пунктов, повреждение промышленных и транспортных объектов, посевов сельскохозяйственных культур.

Главным условием возникновения служит сильный и продолжительный ветер, который характерен для глубоких циклонов.

Основной характеристикой, по которой можно судить о величине нагона, является нагонный подъем уровня воды, обычно выражающийся в метрах. Другими величинами служат глубина распространения нагонной волны, площадь и продолжительность затопления.

Главные факторы, влияющие на величину нагонного уровня – это скорость и направление ветра. В таких условиях скорость обычно достигает 25 м/с, а иногда и более.

Так, наиболее катастрофические нагонные наводнения в Петербурге (Ленинграде) наблюдались в 1777, 1824, 1924, 1955 гг. Тогда максимальный подъем воды в районе Горного института достигал 2–4 м. В пределах дельты Северной Двины (г. Архангельск) – 1,8 – 2 м, в устье р. Преголь (г. Калининград) – 0,9 – 1,9 м, в устье р. Енисей – 1,5–2,1 м, в устье р. Дон (г. Азов) – 2,6 – 2,8 м.

Общим для морских устьев рек является то, что нагон может совпасть по времени с приливом или отливом. Соответственно уровень повысится или понизится.

И еще одна общая закономерность. Чем меньше уклон водной поверхности и больше глубина реки, тем на большее расстояние распространяется нагонная волна. Вот почему на крупных реках с малым уклоном волна распространяется на значительно большие расстояния, чем на малых.

Нагонные наводнения нередко охватывают большие территории. Продолжительность затопления обычно находится в пределах от нескольких десятков часов до нескольких суток.

Чем крупнее водоем и меньше его глубина, тем больших размеров достигают нагоны.

Величины подъема уровня при нагонах с повторяемостью примерно один раз в 15 – 20 лет следующие: на озерах Сегозеро, Сай-ма, Байкал – 0,20–0,25 м, Белое, Чудское, Ильмень – 0,5–0,6 м, Онежское – 0,7–1,0 м, Азовском – 1,0–1,5 м. Каспийском морях – 2,0–2,5 м. А в 1952 г. в районах Каспийское, Махачкала, Сулак вода поднималась до 4,5 м.

По величине подъема уровня, повторяемости и материальному ущербу нагонные наводнения в устье реки Невы в пределах Санкт-Петербурга занимают первое место в России. Наводнения здесь возникают во все времена года, в том числе и зимой, но самыми опасными являются осенние. На них приходится до 70%, включая и катастрофические.

Какой-либо общепринятой классификации для нагонных явлений не установлено. Чаще всего они подразделяются по последствиям на небольшие, большие, выдающиеся и катастрофические. 
 

ЦУНАМИ – это длинные волны, возникающие в результате подводных землетрясений, а также вулканических извержений или оползней на морском дне. Их источник находится на дне океана.

В 90% случаев цунами возникают из-за подводных землетрясений. Механизм образования до конца еще не выяснен. Ясно одно, для образования этих волн необходимо вертикальное смещение морского дна.

К основным параметрам цунами относятся: скорость цунами; высота морской волны; длина морской волны; период морской волны.

Образовавшись в каком-либо месте, цунами может пройти несколько тысяч километров, почти не уменьшаясь. Это связано с длинными периодами волн (от 150 до 300 км). В открытом море корабли эти волны могут и не обнаружить, хотя те движутся с большой скоростью (от 100 до 1000 км/ч). Высота волн небольшая. Однако, достигнув мелководья, волна резко замедляется, ее фронт вздымается и обрушивается со страшной силой на сушу. Высота крупных волн в таком случае у побережья достигает 5 – 20 м, иногда доходит до 40 м.

Волна цунами может быть не единственной. Очень часто это серия волн с интервалами в час и более. Самую высокую из серии называют главной.

Часто перед началом цунами вода отступает далеко от берега, обнажая морское дно. Затем становится видна надвигающаяся. При этом слышны громоподобные звуки, создаваемые воздушной волной, которую водная масса несет перед собой.

         
 

Причины цунами.

Причиной возникновения цунами может быть оползень. Цунами такого типа возникают довольно редко. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 900 м. Образовалась волна, достигшая на противоположном берегу бухты высоты 600 м. Подобного рода случаи весьма редки и, конечно, не рассматриваются в качестве эталона.  
 
Другим источником цунами могут служить вулканические извержения. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются кальдеры, которые моментально заполняются водой, в результате чего возникает длинная и невысокая волна. Классический пример - цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности 5000 кораблей, погибло 36 тысяч человек.  
 
В наш век атомной энергии у человека в руках появилось средство вызывать по своему произволу сотрясения, раньше доступные лишь природе. В 1946 году США произвели в морской лагуне глубиной 60 м подводный атомный взрыв с тротиловым эквивалентом 20 тыс. тонн. Возникшая при этом волна на расстоянии 300 м от взрыва поднялась на высоту 28.6 м, а в 6.5 км от эпицентра еще достигала 1.8 м. Эксперименты дали возможность установить, какой именно гребень бывает наибольшим, а какой - наименьшим.  
 
Картина распространения цунами достаточно сложна, ведь скорость волны цунами определяется глубиной океана и потому на всем пути является переменной. Одни части волнового фронта опережают другие, фронт теряет кольцевую форму, изгибается, иногда даже ломается. Волны начинают пересекать друг друга. От берегов происходит отражение. Отраженные волны накладываются на прямые - интерфируют. Возникает сложная картина движения цунами. Поэтому, помощниками ученых в борьбе с цунами стали электронные вычислительные машины. Во многих университетах мира на основе законов гидродинамики составлены программы для математического моделирования катастрофических цунами. При помощи таких моделей рассчитывается множество вариантов появления и поведения катастрофическкой волны, ее скорости, уровня, трения в зависимости от рельефа местности и других параметров.

К поражающим факторам цунами относятся ударная волна, размытие, затопление. Колоссальная кинетическая энергия волны позволяет цунами рушить практически все, что встречается на пути. Катастрофическое цунами. почти не снижая скорости, способно пройти через населенный пункт средних размеров, превратить его в руины и уничтожить все живое. После прохождения цунами побережье меняет свой облик, корабли выносятся на берег на расстояние сотен, а порой и тысяч метров от кромки моря. В порту Корраль (Чили) в 1960 г. волна цунами перебросила судно водоизмещением 1 1 тыс. т из гавани через город в открытое море. Наряду с материальными потерями цунами приводит к гибели людей. В период 1947-1983 гг. количество жертв составило 13,6 тыс. человек. Наиболее сильное из известных цунами, впоследствии названное Санрику, произошло от подводного землетрясения в 240 км от берегов Японии 15 июня 1896 г. Тогда огромная волна высотой 30 м обрушилась на о. Хонсю. Погибли 27122 человека. Были смыты в море 19617 домов. Первое в России "моретрясение" было зарегистрировано на Камчатке в 1737 г. О нем уже упоминалось выше. По словам очевидца, "последовали волны ужасного и несравненного трясения, потом взвилась вода на берег в вышине сажен 30. которая, нимало не стояв, сбежала в море. От сего наводнения тамошние жители совсем разорились, а многие бедственно скончали свой живот”. 
  
В 1979 г. цунами с высотой волны 5 м обрушилось на тихоокеанское побережье Колумбии. Погибли 125 человек. 
  
В 1994 г. на Филиппинах цунами высотой 15 м разрушило до основания 500 домов и 18 мостов. Погибло более 60 человек.

    СИСТЕМЫ ПРЕДУПРЕЖДЕНИЯ ЦУНАМИ

    Системы предупреждения цунами строятся главным образом на обработке сейсмической информации. Если землетрясение имеет магнитуду более 7,0 (в прессе это называют баллами по шкале Рихтера) и центр расположен под водой, то подаётся предупреждение о цунами. В зависимости от региона и заселённости берегов условия выработки сигнала тревоги могут быть различными.

    Вторая возможность предупреждения о цунами это предупреждение «по факту» — способ более надёжный, так как практически отсутствуют ложные тревоги, но часто такое предупреждение может быть выработано слишком поздно. Предупреждение по факту полезно для телецунами — глобальных цунами, оказывающих влияние на весь океан и приходящих на другие границы океана спустя несколько часов. Так, индонезийское цунами в декабре 2004 года для Африки является телецунами. Классическим случаем являются Алеутские цунами — после сильного заплеска на Алеутах можно ожидать существенный заплеск на Гавайских островах. Для выявления волн цунами в открытом океане используются придонные датчики гидростатического давления. Система предупреждения, основанная на таких датчиках со спутниковой связью с приповерхностного буя, разработанная в США, называется DART (en:Deep-ocean Assessment and Reporting of Tsunamis). Обнаружив волну тем или иным образом, можно достаточно точно определить время её прибытия в различные населённые пункты.

Информация о работе Стихийные бедствия гидрологического характера и их последствия