Автор работы: Пользователь скрыл имя, 19 Января 2011 в 08:05, курсовая работа
Цель и задачи работы. Целью работы является создание информационно-измерительного модуля контроля радиоактивности поверхностных вод.
Для достижения целей необходимо решить следующие задачи:
1. Осуществить выбор дозиметра для создания информационно-измерительного модуля контроля радиоактивности поверхностных вод.
2. Изучить характеристики, устройство и работу дозиметра.
3. Создать структурную схему дозиметра.
4. Проанализировать и сделать выбор основных блоков структурной схемы дозиметра.
В перспективе своего развития
ИС могут применяться в
В состав ИИС входят:
1.2.
Классификация моделей
систем
1. Информационная модель (набор документов и правил поведения объекта).
2.
Структурная модель –
3.
Функциональная модель –
4.
Математическая модель –
5.
Программная модель – алгоритм
и текст программного
6.
Физическая модель –
7.
«Историческая» модель –
Структурная
модель ИИС представлена в приложении
А.
1.3.
Необходимость использования
измерительного модуля
Совершенствование и последовательное развитие методов, аппаратно-программных комплексов и модулей для радиационного мониторинга становится эффективным комплексным мероприятием для обеспечения высокой степени зашиты персонала, населения и окружающей среды от радиационного воздействия. На сегодняшний момент единственным и практически реализуемым мероприятием, компенсирующим дефицит радиационной безопасности стареющих промышленных объектов, является создание новых и совершенных информационно-измерительных модулей, которые представляют собой совокупность средств измерений, компьютеров и вспомогательных устройств, образующих измерительно-вычислительный комплекс, на базе которого можно строить измерительные системы. Измерительные модули контролируют датчики с помощью персонального компьютера, на монитор которого выводится информация о радиационной обстановке.
В
связи с необходимостью использования
информационно-измерительного модуля
разрабатывается структурная схема, представленная
на рис.1.1.
Объект ПИП У АЦП МК МП
Рис.
1.1. Структурная схема измерительного
модуля.
Основными частями системы являются:
РАЗДЕЛ 2
ОПИСАНИЕ ОСНОВНЫХ БЛОКОВ СТРУКТУРНОЙ СХЕМЫ
2.1.Выбор ПИП
Для
непосредственного принятия информации
от объекта исследования с помощью
превращения различных
Блоки детектирования
представляют вентильные ПИП, принцип
действия которых основан на явлениях
внешнего и внутреннего фотоэффекта.
Рис. 2.1.
Классификационная схема ПИП.
Суть внешнего фотоэффекта в испускании электронов на поверхность фотокатода в вакуум под действием светового потока. Кванты света вызывают эмиссию фотоэлектронов.
В зависимости от вида сигнала, непосредственно получаемого с выхода ПИП, его делят на:
К генераторным относятся ПИП, обеспечивающие непосредственное преобразование изменений неэлектрической величины (НЭВ) в пропорциональное значение тока или напряжения.
К параметрическим относятся ПИП, у которых выходная величина представляет собой изменения какого-либо параметра электрической цепи - ёмкости, индуктивности или сопротивления.
Суть
внутреннего фотоэффекта в
Блоки детектирования дозиметра основаны на принципе счетчика Гейгера — Мюллера, который представляет собой газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и других ионизирующих излучений: a- и b-частиц, γ-kвантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах и на ускорителях. γ -кванты регистрируются в счетчике по вторичным ионизирующим частицам — фотоэлектронам, нейтроны регистрируются по ядрам отдачи и продуктам ядерных реакций, возникающим в газе счётчика.
В счетчике Гейгера — Мюллера
Электрические импульсы во внешней цепи, возникающие при вспышках разряда в счетчике Гейгера — Мюллера, усиливаются и регистрируются электромагнитным счётчиком или пересчётной схемой. На рис. 2.2 приведена счётная характеристика счетчика Гейгера — Мюллера — зависимость числа N регистрируемых в единицу времени импульсов от приложенного к счётчику напряжения V. Рабочий участок характеристики (плато) имеет протяжённость от нескольких десятков в до нескольких сот в. На плато число отсчётов практически равно числу ионизующих частиц, попадающих в счетчик.
Рис. 2.2. Схема стеклянного счётчика Гейгера
— Мюллера.
где:
2.2.
Выбор усилителя
Усилитель-дискриминатор представляет собой быстродействующий однокаскадный усилитель, выполненный на операционном усилителе. Операционный усилитель является универсальным аналоговым устройством, которое используется для построения схем разнообразных генераторов, стабилизаторов напряжения. Операционные усилители представляют собой основу ЭВМ непрерывного действия, а также основу большинства законченных функциональных узлов аналоговой электронной аппаратуры.
2.3.
Выбор АЦП
Для преобразования аналогового сигнала в цифровой применяется выбор АЦП, который принимает входящие аналоговые сигналы и генерирует соответствующие им цифровые сигналы, то есть происходит автоматическое преобразование непрерывной измеряемой величины аналогового сигнала в пропорциональную дискретную величину, изображенную цифровым кодом.
Для определения разрядности АЦП, а затем дальнейшего выбора микросхемы необходимо произвести следующие расчёты.
Необходимое количество уровней квантования проектируемого устройства:
, (2.1)