Химическое оружие

Автор работы: s******************@gmail.com, 27 Ноября 2011 в 09:55, реферат

Краткое описание

В 1894 г. Робер Сесил, бывший премьер-министр Великобритании, в своем обращении к Британской ассоциации содействия научному прогрессу, перечисляя нерешенные проблемы науки остановился на задаче: что же действительно представляет собой атом - существует он на самом деле или является лишь теорией, пригодной лишь для объяснения некоторых физических явлений; какова его структура.

Содержимое работы - 1 файл

рхбз.docx

— 45.32 Кб (Скачать файл)

Однако диспетчер  Киевэнерго не дает разрешение на заглушение аппарата и начало испытаний, и блок работает без САОР, что технологическим  регламентом не допускается. 

23ч.10 мин.  Получено  разрешение на остановку реактора.  Мощность снижена до 700 МВт (тепловых). Запас реактивности до снижения  был около 26 ст.РР.  После снижения  началось уменьшение запаса реактивности  из-за отравления ксеноном. 

Смена, заступившая  с 0,00 часов 26 апреля, приняла реактор  на мощности 700 МВт. 

В результате выхода стержней локального автоматического  регулятора (ЛАР), компенсирующего отравление, на верхние концевые выключатели  произошло отключение ЛАР и переход  на автоматический регулятор интегральной мощности (АР) основного диапазона. Однако ведущему инженеру управления реактором (ВИУР) не удалось удержать его в работе и реактор был  заглушен. В таких случаях нужно  ждать разотравления реактора, но вместо этого начали подъем мощности. 

1ч.00 мин.  Персоналу,  наконец, удалось поднять мощность  реактора и стабилизировать её  на уровне 200 МВт (тепловых) вместо 700-1000, определённых программой испытаний. 

1ч.03 мин.-1ч.07мин.  К 6 работающим главным циркуляционным  насосам (ГЦН) дополнительно подключили  еще 2, чтобы повысить надежность  охлаждения активной зоны.  С  другой стороны, это подключение  снижает запас до температуры  насыщения на всасе ГЦН, а  следовательно, и на входе в  технологические канаты (ТК). 

Ввиду значительных колебаний давления и уровня воды в барабанах-сепараторах, чтобы исключить  останов блока по этим параметрам, персонал отключил защиту по давлению и уровню, что запрещено регламентом. 

1ч. 20 мин.  В результате  отравления ксеноном стержни  рабочего регулятора вышли почти  на верхние концевые выключатели.  Чтобы не допустить отключения  АР и удержать его в зоне  регулирования, ВИУРу пришлось  интенсивно извлекать стержни  ручного регулирования и укороченные  стержни-поглотители (УСП). 

В результате включения  двух ГЦН в дополнение к шести  работающим, уровень в барабанах-сепараторах  стал уменьшаться.  Для поддержания  уровня ведущий инженер управления блоком (ВИУБ) резко увеличил подачу питательной воды в реактор, с 0,75 первоначального расхода (если за 1 принять среднее значение расхода  питательной воды на мощности 200МВт) до трех, а затем и 4-х кратного.  Вследствие этого технологические  каналы оказались заполненными водой  по всей высоте активной зоны, в то время  как до увеличения подпитки паровая  фаза занимала верхнюю часть канала на участке 1,5-2 м от верха активной зоны. 

При положительном  паровом коэффициенте реактивности в этом случае выделяется отрицательная  реактивность, аппарат начинает глохнуть.  Для удержания его на мощности необходимо извлекать стержни РР и УСП, что еще больше уменьшает  запас реактивности. 

Сочетание двух факторов: отравления и увеличения расхода  питательной воды, - привело к  тому,  что в 1ч. 22мин. 30 сек, по данным распечатки программы "ПРИЗМА", в  активной зоне находилось всего 6-8 стержней в пересчете на полностью погруженные. 

После стабилизации уровня в барабанах-сепараторах  ВИУБ резко снижает расход питательной  воды до исходного. 

В технологических  каналах начинает образовываться паровая  фаза, начиная от верхних участков активной зоны и распространяясь  вниз. Аппарат начинает разгоняться.  Включение дополнительных двух ГЦН  способствовало этому разгону, поскольку  уменьшило запас до температуры  насыщения на входе в активную зону.  Работающий регулятор стремится  подавить увеличение мощности, идет вниз, доходит до нижнего концевого  выключателя, происходит автоматический переход на резервный регулятор, который также начинает движение вниз, что было зафиксировано программой быстрой диагностики и регистрации  параметров (ДРЕГ).  Однако эффективности  четырех стержней регулятора не хватает, и мощность реактора продолжает медленно увеличиваться. 

Задачей ведущего инженера управления реактором в этой ситуации было "помогать" регулятору в подавлении растущей мощности путем ввода в  активную зону стержней РР и УСП.  Но, очевидно, выбор стержней для  ввода в активную зону был неудачным. 

Удачный выбор стержней на управление и их быстрый ввод в активную зону (по 4 или по 2) смогли бы остановить рост мощность и предотвратить  аварию даже в этот момент. 

1ч. 23 мин.  После  стабилизации давления и уровня  в барабанах-сепараторах испытания  на выбеге начались. 

1ч. 23 мин. 04 сек.  Закрыт  стопорно-регулирующий клапан турбогенератора  номер 8. Начался режим выбега. 

В этом случае должна была сработать еще одна защита - останов реактора по отключению последнего оставшегося в работе турбогенератора.  Но персонал, зная это, отключил заблаговременно  эту защиту, по-видимому, чтобы иметь  возможность повторить испытания, если первая попытка не удастся. 

Поскольку на каждой из сторон контура многократной принудительной циркуляции (КМПЦ) 2 ГЦН были запитаны от системы, а 2 - от выбегающего турбогенератора, в процессе испытаний расход через  КМПЦ уменьшался, увеличивалось парообразование, а это способствовало ускорению  нарастания мощности. 

В 1ч.23 мин. 40 сек. на мощности примерно 500 МВт (тепловых) начальник  смены 4-го блока, поняв опасность  ситуации, дал команду ВИУРу нажать кнопку АЗ-5.  Стержни СУЗ пошли  в зону, но дошли только до 3-3,5 м. Тогда  ВИУР обесточил муфты сервоприводов, чтобы стержни опустились в зону под действием собственной тяжести, но большинство из них так и  остались в верхней половине активной зоны. 
 

В 1ч. 23 мин. 49 сек. произошел  взрыв. 
 

Ночью с 25 на 26 апреля на 4 блоках АЭС работало 176 человек - дежурный персонал и ремонтные  службы. 

На двух стоящих  блоках 5 и 6  находилось 268 строителей и монтажников. Несколько десятков человек рыбачили на берегах пруда  охладителя. 

Все они стали  очевидцами того, как в 1 час 23 мин 49 с. раздались 2 взрыва . Над четвертым  энергоблоком на фоне черного неба стали видны раскаленные куски ,икры, всполохи пламени. 

Вздрогнули и прогнулись толстые железобетонные стены, в  потоке пара рванули ввысь лопнули  трубопроводы, на крыше во многих местах начался пожар. 

Над реактором возникло оранжевое свечение . 

                     

5.2 Причины аварии  на 4-м энергоблоке ЧАЭС. 

Анализируя данные хронологии развития аварии, а также  расчётные исследования по определению  эффективности СУЗ в предаварийном  состоянии, можно сформулировать следующие  причины аварии. 

Технические причины: 

а) недостаток конструкций  стержней РР, ПКАЗ, АЗ - наличие положительного выбега реактивности при погружении этих стержней с верхних концевиков.  Как показывают результаты расчётных  исследований при варьировании исходного  высотного распределения плотности  потока тепловых нейтронов в пределах точности показаний датчиков СФКРЭ  вводимая положительная реактивность лежит в пределах 0,5-1,15b, 

б) недостатком системы  аварийной защиты.  Как показывают результаты расчётов, если бы стержни  УСП были задействованы в аварийную  защиту, отсутствовал бы положительный  выбег реактивности, 

в) положительный  паровой коэффициент реактивности. 

Ошибки персонала: 

а) снижение запаса реактивности ниже допустимой величины; 

б) провал мощности до нуля во время её снижения, а затем  подъём и работа на уровне меньшем, чем записано в программе эксперимента (200 МВт); на малой мощности аппарат  менее устойчив, поскольку, во-первых, точность поддержания мощности автоматическим регулятором в диапазоне 0,25-20%Wном  равна ±3%, в то время как в  диапазоне (20-100)%Wном=±1%; во-вторых, на малой  мощности небольшие её колебания  приводят к значительным изменениям реактивности.  Это объясняется  небольшим запасом температуры  теплоносителя на входе в активную зону до температуры насыщения из-за малого расхода питательной воды; 

в) подключение к  реактору всех восьми ГЦН с превышением  расходов, установленных регламентом, по отдельным ГЦН; 

г) блокировка персоналом защиты по повышению давления и снижению уровня в барабанах-сепараторах; 

д) блокировка защиты по отключению двух турбогенераторов; 

е) отключение САОР. 

К ключевым нарушениям персонала следует отнести а) и б). 
 
 

Авария на ЧАЭС привела  к выбросу из активной зоны реактора 50 МКи радионуклидов и 50 МКи  радиоактивных  благородных газов , что составляет 3-4% от исходного количества радионуклидов  в реакторе,  которые поднялись  с током воздуха на высоту 1200 м. Выброс радионуклидов в атмосферу  продолжался до 6 мая,  пока разрушенную  активную зону реактора не забросали  мешками с доломитом, песком, глиной и свинцом. И все это время  в атмосферу поступали радионуклиды, которые развеялись ветром по всему  миру. Отдельные мелкодисперсные  частицы и радиоактивные газы были зарегистрированы на Кавказе, в  Средней Азии, Сибири, Китае, Японии, США. 27 апреля в Хойниках радиационный фон составлял 3 Р/ч ! Хватит и пяти дней, чтобы чтоб заболеть хронической  лучевой болезнью. 28 апреля на большей  части северной Европы, в частности  в Дании наблюдалось повышение  радиационного фона на 10% от исходного  уровня . Сложные метеорологические  условия и высокая летучесть  радионуклидов привели к тому, что радиационный след сформировался  в виде отдельных пятен.     

Наряду с сильным  загрязнением попадались участки совсем не загрязненные. Выпадение радиоактивности  наблюдалось даже в районе Балтийского  моря в виде длинного узкого следа. Сильному радиоактивному загрязнению  подверглись Гомельская и Могилевская  области Белоруссии, некоторые районы Киевской и Житомирской областей Украины, часть Брянской области  России. Но основная часть радионуклидов  осела в так называемой 30-километровой зоне и к северу от неё.  

          В выбросах было выделено 23 основных  радионуклида. Большая часть из  них распалась в течении нескольких  месяцев, облучая при этом все  вокруг дозами, в несколько десятков  и сотен раз превосходящих  фоновые. Из этих нуклидов наиболее  опасен йод-131, имеющий период  полураспада 8 сут и обладающий  высокой способностью включаться  в пищевые цепи. Однако его  воздействие кратковременно, и заражения  им человеку легко избежать  путем проведения йодопрофилактики (т.е. в молекулы организма включается  только «нормальный» йод, а  радиоактивному как бы уже  и места нет и он спокойно  выводится из организма) и снижения  потребления продуктов, превышающих  санитарные нормы содержания  его. В первые месяцы после  аварии было категорически запрещено  вести какую-либо хозяйственную  деятельность на загрязненной  территории, поэтому со стороны  йода опасности заражения продуктов  питания не возникло, она заключалась  лишь в альфа-  и  бета-излучении. 

          Из долгоживущих изотопов, которые  лучше назвать среднеживущими, наиболее  значимыми являются стронций-90 и  цезий-137 с периодами полураспада  соответственно 29 и 30 лет. Они  обладают рядом особенностей  поведения в организме, путей  поступления и способов выведения  из организма,  разные продукты  обладают различной способностью  концентрировать их в себе. Так,  в 90 г. в Хойническом районе  Гомельской области Белоруссии  содержание цезия-137 в мясе в  400 раз; в картофеле – в 60 раз; в зерне – в 40-7000 раз  (в зависимости от вида и  места произрастания); в молоке  – в 700 раз, а стронция –  в 40 раз было выше нормы .        

          Что же можно сказать о таких  долгоживущих изотопах, как калий-40, плутоний-239 и других, выбросы которых  также имели место, периоды  полураспада которых исчисляются  тысячами и миллионами лет,  об их участии в загрязнении  окружающей среды сказано достаточно  мало. Можно лишь сказать, что  радиоактивный калий так же  активно вступает в метаболизм, как и стабильный его изотоп, а плутоний, попадая в легкие, даже в очень малых концентрациях,  способен вызвать рак их. 

          Но что же было сделано для  того, чтоб очистить зараженные  территории от радионуклидов,  чтоб больше не подвергать  людей этой опасности? Ведь  отдаленные последствия хронического  действия малых доз радиации  – малоизученная область знания, почти ничего не известно о  влиянии этого фактора на потомство.  Одно можно сказать, что сколь  угодно малой не была доза, она обязательно даст о себе  знать.  

          Дезактивация территорий заключалась  в одном – смыве радиоактивной  пыли с поверхностей предметов.  Это, конечно, важно и необходимо, но кто подумал о том, куда  это всё смывалось, о земле,  и так уже заражённой? Даже  более того, 30-ти километровая  зона была объявлена своеобразной  «лабораторией», полигоном научных  исследований для изучения влияния  радиации на природу, следовательно  не принималось никаких попыток  по дезактивации почв. За пределами  30-километровой зоны таких работ  также не проводилось, хотя  науке известны способы выведения  радионуклидов из почв. Основным  принципом таких работ является  перевод радионуклидов в растения  с последующим их выкосом и  захоронением. Ионы в почвах могут  существовать в двух видах  : в растворимом и адсорбированном.  В адсорбированном виде они  недоступны для растений. Сорбционная  способность почв зависит от  типа почв, наличия в них тех  или иных веществ, оводненности  и многих других факторов. Сорбция  велика при наличии органических  веществ в почве. Она значительно  снижается при низких значениях  рН, при наличии комплексонов, а  также атомов-аналогов, которыми  авляются для Со,Y и Се –  Fe и Al, для Sr и Cs – Са и  К. Адсорбированные же ионы  легко вытесняют друг друга  в соответствии с рядом активности  металлов. Стронций вытесняется  ионами железа и меди, к тому  же сам обладает достаточной  подвижностью в почвах. Цезий  практически не вытесняется, но  по данным Куликова И.В. и  др. [7] десорбируется водными растительными  экстрактами и ЭДТА. Его подвижность  увеличивается в почвах с высоким  содержанием К и Са. Эта проблема  требует дополнительных исследований. 

Информация о работе Химическое оружие